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Preface to the Second Edition

Time and quantum mechanics are, by and unto themselves, words of such
force and attraction that the first edition of this book quite rapidly went
out of print. The idea of bringing out a second edition became, thus, more
compelling as time (indeed) flew on. Among the different possiblities (a wholly
new text, a mere reprinting) we finally settled on a middle way, namely that
each of the contributors has decided to what extent their respective chapters
needed updating. One of the reasons for this decision is that the field has
indeed been evolving, and the increase in editions of the TQM workshops
held in La Laguna and Bilbao has provided us with quite a number of possible
contributors for preparing, in addition to this second edition, a second volume
with entirely new chapters. But more important is that the results and texts
of the authors have withstood the passage of time and have weathered very
well its ravages. All chapters have been updated, however, in order to include
new results and bibliography.

We hope that this new edition meets with as much success as its prede-
cessor and, as we write this, that in the future we can provide the interested
reader with more contributions of other participants in our TQM workshops.

We are grateful to R. F. Snider and G. N. Flemming for pointing out
several typos and errors of the first edition. We also acknowledge additional
support from Ministerio de Educación y Ciencia (Grants BFM2003-01003,
FIS2006-10268-C03-01 and FIS2004/05687), Gobierno Autónomo de Canarias
(PI2004/025), and UPV-EHU (Grant 00039.310-15968/2004).

Bilbao - La Laguna, J. Gonzalo Muga
May 2007 Rafael Sala Mayato

Iñigo L. Egusquiza



Preface to the First Edition

Time and quantum mechanics have, each of them separately, captivated sci-
entists and laymen alike, as shown by the abundance of popular publications
on “time” or on the many quantum mysteries or paradoxes. We too have been
seduced by these two topics, and in particular by their combination. Indeed,
the treatment of time in quantum mechanics is one of the important and
challenging open questions in the foundations of quantum theory.

This book describes the problems, and the attempts and achievements
in defining, formalizing and measuring different time quantities in quantum
theory, such as the parametric (clock) time, tunneling times, decay times,
dwell times, delay times, arrival times, or jump times. The theoretical analysis
of several of these quantities has been controversial and is still subject to
debate. For example, there are literally hundreds of research papers on the
tunneling time. In fact, the standard recipe to link the observables and the
formalism does not seem to apply, at least in an obvious manner, to time
observables. This has posed the challenge of extending the domain of ordinary
quantum mechanics.

The difficulties in dealing with time in quantum theory were made explicit
very early on, most clearly by Pauli in his famous “theorem,” which seemed to
impose a serious limitation on the possibility of formulating time as a quan-
tum observable and which has hindered the investigation of time in quantum
mechanics for many years. Another disturbing historical landmark is the dis-
covery of quantum Zeno’s effect, a paradox that arises when attempting to
find an algorithm for computing time probabilities by means of frequently
repeated measurements: in the continuum limit these measurements “freeze”
the occurrence of events. More recently, however, in the last 15 years, there has
been much interest in overcoming these difficulties. Researchers from atomic,
molecular, and optical sciences, or from mesoscopic, high-energy, and mathe-
matical physics, have converged to study different time quantities in quantum
mechanics. In addition, modern laser technology and the ability to manipu-
late atomic and molecular motions and the internal state of quantum systems
allow nowadays the experimental realization of some of the questions on time
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in quantum mechanics. As a matter of fact, a number of time observables are
already routinely measured in laboratories, for example arrival times in time-
of-flight experiments, but the theoretical foundation of these measurements is
still being discussed.

The book reflects a good number of these recent trends, but it is not an en-
cyclopedic attempt to cover all the many different open questions, even entire
fields, where time plays an important role, frequently a puzzling one, in quan-
tum theory. It is not possible to cover all these subjects in a comprehensive
manner unless the treatment becomes very superficial, so we abandoned that
objective. While many of these topics are strongly related to the ones pre-
sented here, others are basically decoupled. We have thus preferred to make a
more compact selection of topics based on the workshops on “Time in Quan-
tum Mechanics” (TQM) in La Laguna and Bilbao. Our aim is to edit further
volumes containing new aspects of quantum time not treated in the present
one with additional material from old and new TQM workshops.

Most authors are or have been involved in the definition or study of
“characteristic times” or “time observables” in quantum mechanics, and more
specifically on tunneling and/or arrival times, which have been central sub-
jects in the TQM workshop series. Even so, this book goes clearly beyond
these two seed subjects. Thorny issues such as the relations between quan-
tum mechanics and the world of classical events, the theory of measurement,
hidden variable theories, time–energy uncertainty principles, superluminal ef-
fects, or extensions of the standard formalism are frequently ingredients of this
research, as demonstrated in several chapters. It became evident to us that
these topics, surrounding the central ones, had to be addressed too, in order
to get a better handle on the original problems. Understanding the mysteries
of time in quantum mechanics is thus inextricably linked to understanding
quantum mechanics itself.

The chapters that follow are reviews that may serve both as an introduc-
tory guide for the non-initiated and as a useful tool for the expert. We have
essentially allowed full freedom to each contributing author in choosing their
presentation and emphasis. This has the major advantage of freshness and,
in this manner, the actual state of the issue is much better presented: in this
field, there is a host of diverse approaches, tools, languages, notations, nomen-
clature ... and results. Nonetheless, there has been progress, and consensus in
some topics has been achieved. This consensus is also well reflected in the
following chapters, as the reader will soon discover. The main disadvantage
is of course that the presentation is not fully unified, and that notation and
nomenclature are occasionally divergent. In particular, terms such as “tun-
neling,” “traversal,” “delay,” or “arrival” times are used in different ways in
different chapters.

Finally, we would like to acknowledge our coworkers D. Alonso, A.D. Baute,
S. Brouard, M. Buttiker, J.A. Damborenea, V. Delgado, C.R. Leavens,
D. Maćıas, J.P. Palao, A. Pérez, D. Sokolovski, R.F. Snider, and G.W. Wei for
all their support in timing quantum mechanics and for so many good times
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with them. We are also indebted to the funding agencies of the TQM work-
shop series: Universidad de La Laguna, Ministerio de Educación y Cultura,
Ministerio de Ciencia y Tecnoloǵıa, European Union (through the Canadian–
European Research Initiative on Nanostructures, CERION), and the Basque
Government.

Bilbao - La Laguna, J. Gonzalo Muga
August 2001 Rafael Sala Mayato

Iñigo L. Egusquiza
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1 Departamento de Qúımica-F́ısica, Universidad del Páıs Vasco, Apdo 644. Bilbao,
Spain
jg.muga@ehu.es

2 Departamento de F́ısica Fundamental II, Universidad de La Laguna, Tenerife,
Spain
rsala@ull.es

3 Department of Theoretical Physics and History of Science, University of the
Basque Country, P.O. Box 644, 48080 Bilbao, Spain
wtpegegi@lg.ehu.es

This chapter is a historical sketch of “time in quantum mechanics.” We have
adopted a “physicist’s approach” to history, summarizing some of the con-
tributions underlying the topics and concepts treated in the book in rough
chronological order. The account is complemented with comments on later or
recent repercussions of the original works, giving certain prominence to some
of our own contributions. The time span of this “story” is almost 100 years,
so necessarily many of the comments and references will be minimal, and even
entire fields are absent, in particular those not related to the topics addressed
in the subsequent chapters.

1.1 Role of Time in the Early Days of Quantum Theory

In 1913 Bohr suggested that the interaction of radiation and atoms occurred
by means of instantaneous transitions, “quantum jumps,” among the allowed
atomic orbits [1].1 The jumps were accompanied by the absorption or the
emission of radiation, whose frequency corresponded to the energy difference
of the stationary orbits, ν = ΔE/h. However, no mechanism for the timing of
these transitions was provided. Soon Rutherford pointed out to Bohr that this
lacuna was a “grave difficulty” of his theory, and Slater noted a contradiction
between the assumed instantaneous character of the jumps and the observed
narrow widths of the spectral lines. There was some interest in discovering an
1 The main source for this section is a book by Mara Beller [2]. An interesting

review on time in quantum mechanics during the period 1925–1933 may be found
in [3].
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explanatory mechanism, but none was found. This led Einstein to propose a
statistical theory for the transition probabilities in 1917.

Heisenberg and the Göttingen group tried to solve the problems of the old
quantum theory by creating a “truly discontinuous” theory, matrix mechanics,
in which unobservables, in particular the orbits, would be eliminated and in
which visualizable models based on a space–time continuum would play no
role at all. However, the timing of events did not quite fit in this scheme, as
evidenced by a letter from Pauli to Bohr in 1925 [4]:

“In the new theory, all physically observable quantities still do not
really occur. Absent, namely, are the time instants of transition pro-
cesses, which are certainly in principle observable (as for example, are
the instants of the emission of photoelectrons). It is now my firm con-
viction that a really satisfying physical theory must not only involve
no unobservable quantities, but must also connect all observable quan-
tities with each other. Also, I remain convinced that the concept of
‘probability’ should not occur in the fundamental laws of a satisfying
physical theory.”

He also speculated that perhaps time could be defined through the concept
of energy and wondered about the meaning of a time duration.

Heisenberg answered a few days later [5]:2

“Your problem of ‘duration’ plays a fundamental role, and I’ve
thought over several matters for domestic use. First, I believe that
one can distinguish between a ‘coarse’ and a ‘fine’ duration. When,
as in the new theory, a point in space has no longer a fixed place, or
when this place is still only defined formally and symbolically, then the
same is true also of the time-point of an event. But there is always
given a rough duration, as also a rough place in space: with our geo-
metric picture we shall still be able to achieve a rough picture of the
phenomena. I think it is possible that this rough description is perhaps
the only one we may ask for in the formalism.”

Heisenberg’s words announce some aspects of his uncertainty paper, but
things were not quite mature for that step as yet. The original agenda of ma-
trix theorists was quite radical; they doubted that the “position of the electron
in time” could be given any meaning. This opinion goes even beyond the im-
possibility of an accurate definition of conjugate variables, a statement that
was formulated later. However, reacting to the success of the visualizable and
continuous wave mechanics of Schrödinger, matrix theorists retreated eventu-
ally from the extreme original program. Even though Schrödinger had shown
the formal equivalence between matrix and wave mechanics for bound sys-
tems, an interpretational war began, and the two approaches were for a while

2 Just one week later, Heisenberg, in a letter to Einstein, wondered if the times of
transition should be regarded as observable or not [6].
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competing, each claiming a superior or more fundamental status. Matrix the-
orists reemphasized the importance of the discontinuities, and thus of the
quantum jumps, since they were not evident in the continuum wave theory.

1.1.1 Born’s Collision Papers

Born’s aim in his two 1926 collision papers was to harmonize the jumps and the
wave picture [7, 8]. For an electron–atom collision, he interpreted the squared
modulus of the stationary wave function coefficients at infinite distances as
probabilities for the electron “to be thrown” into a given direction for a given
atomic state. The theory would therefore not provide the actual state of the
atom after the collision, but rather the probability of a certain event, identified
by Born as a quantum jump. In this description, however, the wave function
considered was stationary, so the question of the timing of the event was not
really addressed.

Two early reactions to Born’s proposal were due to Pauli and Jordan:
Pauli extended the probabilistic interpretation to the position of the electron
and opened the way for the return of Heisenberg to visualizable space–time
concepts. According to Jordan, the probability interpretation of Born changed
the status of transition probabilities from primary to secondary concepts,
calculable now from the more elementary probabilities of the stationary states
through their time variation [9]. He believed at that time that these were
probabilities to be in the states, not “to be found.” However, the distinction
is important with regard to a consistent “transition rate interpretation” of
time derivatives. In general, it is not possible to write the exact quantum
mechanical equation for the derivative of a “population” Pa as a rate equation

dPa
dt

=
∑

b

(WabPb −WbaPa) (1.1)

in terms of transition rates W , since the interference (nondiagonal) terms of
the density matrix also matter. In other words, one cannot visualize the ensem-
ble as being divided into different subensembles until a measurement is per-
formed, and therefore the probabilities under consideration are not probabili-
ties to be in the state, as Jordan thought. Note, however, that in open systems
or systems repeatedly measured, an equation such as (1.1) and a genuine tran-
sition rate interpretation may be justified. More on this in Sect. 1.6.2 below.

1.1.2 Pauli’s First Encyclopedia Article

In 1926, Pauli still acknowledged in his first Encyclopedia article that he had
doubts about the role of time, along the lines of his letter to Bohr [10]. He
emphasized that Einstein’s probabilistic treatment of absorption and emission
was mute about the times of transition. Did this fact indicate a fundamental
causality, or was it due to the incompleteness of the theory? “This is very
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much debated, yet still an unsolved issue,” he concluded. He also insisted
on the problem of the duration of the jump, suggesting that perhaps the
precision limit of the time of transition was of the same order of magnitude as
the period of the light emitted, but admitted that he could not offer a more
precise analysis. The duration question is still being studied nowadays and is
discussed in Chap. 4 by L. S. Schulman.

1.1.3 Uncertainty Relations

Heisenberg’s 1927 paper is in part a response to Pauli’s questions [11]. It
was largely based on the discussion of several thought experiments where
the disturbance of the measuring device was treated in terms of classical
particle space–time pictures and quantum jumping, possibly to counterattack
Schrödinger’s wave picture.

Heisenberg insisted on the instantaneous quantum jump concept,

“... the time of transitions or ‘quantum jumps’ must be as concrete
and determinable as, say, energies in stationary states.”

However, in one of the idealized experiments discussed, he argued that the
imprecision within which the instant of transition is specifiable is given by Δt
in ΔEΔt ∼ h, where ΔE is the change of energy in the quantum jump.

Without denying the fundamental importance of Heisenberg’s uncertainty
paper, his introduction of the “principle of indeterminacy” is rather unsatis-
factory and imprecise for most modern commentators. After more than seven
decades, many of the issues involved have been clarified for position and mo-
mentum (see e.g. a detailed analysis by M. Appleby where distinction is made
between retrodictive errors, predictive errors, and disturbances, which lead
to six uncertainty-like relations [12]), but similar clarity has not yet been
achieved for time and energy.

In a “note added in proof,” Heisenberg already acknowledges the deficien-
cies, pointed out by Bohr, of some of the arguments given to that date. Apart
from that, several expressions, concepts or formulae were ambiguous or un-
defined. In particular, he presented the “familiar equation” Et − tE = −i�
(these are his words and notation) without further comment on the nature of
the mysterious time matrix t. Perhaps the explanation of the assumed “famil-
iarity” is that there was nothing exceptional in the conjugate character of the
time span and frequency width of a signal. The novelty in Heisenberg’s work
is to associate Δt with the breadth of imprecision in evaluation of a point in
time and to extend the uncertainty product relations to the realm of particle
concepts such as position and momentum.

In Bohr’s 1928 paper in Nature [13], a reelaboration of his Como lecture,
he also discussed the uncertainty product relations for position–momentum
and time–energy, but Δt and Δx became the extension of the wave packet
in time or space, whereas Δν and Δσ were introduced as the wave packet
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frequency and wave number widths (σ = 1/λ=inverse of the wave length).
Bohr wrote, “in the most favourable case”,

ΔtΔν = ΔxΔσ = 1 (1.2)

as “well-known relations from the theory of optical instruments.” Using the
simple Planck–Einstein–de Broglie formulae E = hν and λ = h/p, he obtained

ΔtΔE = ΔxΔp = h , (1.3)

which would determine the “highest possible accuracy in the definition of the
energy and the momentum of the individuals associated with the wave field.”

We see that already in the first papers on the quantum time–energy uncer-
tainty principle by the founding fathers, there is a clear disparity of meanings
in Δt and ΔE symbols. The seed had been planted for a long history of con-
fusion and controversy on the time–energy relations. This is the subject of
Chap. 3, so we shall skip further references to them, save for a brief mention
of the contributions by Mandelstam and Tamm in 1945 [14] and Aharonov
and Bohm in 1961 [15].

Other physicists, such as Campbell and Sentfleben, contributed to the
early discussions on the role of time in quantum theory. The interested reader
may find additional material in [2, 3].

Much of the initial hesitation and questioning faded away after the claims
that the theory was final, following the rapid discoveries of the late twenties,
became generally accepted. The Copenhagen–Göttingen group closed ranks
and promoted the idea that the interpretative issues were essentially solved.
In this vein, Bohr’s paper in Nature was supposed to have eventually put an
end to the contradiction between quantum jumps and the continuous theory,
something that we fail to see nowadays. In particular, if we to try extract
a recipe for the time distribution of the jumps from it, we would be in for a
difficult ride. Anyhow, it was a ripe time to apply the theory to many different
systems and experiments, and the applications were so successful that any and
all discording voices had little echo for decades.

1.2 The Thirties and Forties

1.2.1 Pauli’s “Theorem”

An important landmark in the history of time in quantum mechanics is a foot-
note of Pauli’s second Encyclopedia article of 1933 [16], reedited with minor
changes in 1958 [17], in which the argument runs as follows: if there existed a
self-adjoint time operator T̂ canonically conjugate to the Hamiltonian,

[Ĥ, T̂ ] = i� , (1.4)
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the application of the unitary operator exp(iE1T̂ /�) to the energy eigenstate
|E〉 would produce a new energy eigenstate with energy eigenvalue E − E1,
so that the spectrum of E would necessarily extend continuously over the
range [−∞,∞]. In principle, this precludes the existence of a self-adjoint time
operator for systems where the spectrum of the Hamiltonian is bounded,
semibounded, or discrete, i.e., for most of the systems of physical interest
[16, 17, 18, 19, 20, 21]. Pauli’s conclusion was that

“...the introduction of an operator T̂ must fundamentally be aban-
doned....”

In a modern reading of Pauli’s footnote, it should be noted, first of all,
that it was presented as a formal argument and not, as frequently quoted,
as a “theorem.” No mathematical rigor was used in the original formula-
tion, in particular no attention was paid to the domains of the operators
involved. This point has been emphasized by Galapon, who has shown that
it is consistent to assume a bounded, self-adjoint time operator conjugate to
a Hamiltonian with an unbounded, semibounded, or finitely countable point
spectrum [21, 22, 23, 24, 25]. In any case, there is no need to impose the
requirement of self-adjointness in a formulation of quantum mechanics that
links observables with positive operator-valued measures (POVMs), that is to
say, with nonorthogonal resolutions of the identity (see [26] and Chap. 3 for an
introduction to POVMs, and more specifically Chap. 10 for their usefulness
in understanding times of arrival). For a different way out in the context of a
theory of irreversible evolution, see [27] and references therein.

The traditional reading of Pauli’s argument has been, however, quite dif-
ferent. It has been generally regarded as a no-go theorem for the possibility
to describe time observables within quantum theory and as the basis for the
lapidary sentence “time is only a parameter in quantum mechanics.”

Time has of course a parametric aspect in the classical or quantum equa-
tions of motion. But quite often we are interested in time as an observable,
namely, in the instants when certain events occur or in the durations of pro-
cesses. Given the central role of the observable concept in quantum theory,
it is indeed strange, even absurd, that the theoretical treatment of time ob-
servables has been essentially ruled out for so many years as a consequence of
Pauli’s footnote, without too much questioning. The weight of authority may
have played some role, and other possible reasons will be pointed out below,
see Sect. 1.4.3.

1.2.2 Von Neumann

One year before Pauli’s article, von Neumann had published his “Mathemat-
ical Foundations of Quantum Mechanics” [28] where he pinpoints the “chief
weakness of quantum mechanics” as its nonrelativistic character, which distin-
guishes t (without a corresponding operator) from the three space coordinates
x, y, z represented by operators. In recent times, Hilgevoord has criticized this
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view, arguing that von Neumann confuses the position of a particle with the
coordinates of a point in space [29, 3]. The partners of the parametric time
t are the three coordinates of three-dimensional space, and none of these
quantities is quantized. This does not preclude, according to Hilgevoord, the
existence of true time observables.

In the same book, von Neumann formalizes the process of measurement
by means of a dynamical discontinuity, a “reduction” or a “collapse” of the
wave function,

|ψ〉 =
∑

ci|ψi〉 → |ψi〉 , (1.5)

which has thereafter been frequently identified as a quantum jump, even
though it is not exactly the quantum jump of Bohr’s theory.

1.2.3 Mandelstam–Tamm

Mandelstam and Tamm produced observable-dependent uncertainty relations
that refer to the variations in time of their expectation values [14]. They are
possibly the most widely accepted and less controversial time–energy uncer-
tainty relations nowadays. Note, however, that they do not refer to time of
occurrence of events but to characteristic times of average expectation values.
Consider a generic observable Â. Then we have

τAΔE ≥ �/2 ,

where
τA =

ΔA

d〈Â〉/dt
.

In words, τA is the characteristic time pertaining to Â; it is the typical time
interval required for there to be a substantial modification (in the scale given
by ΔA) of the value of 〈Â〉. Here (ΔA)2 and (ΔE)2 are the variances for the
observable Â and for the energy, respectively (see Chap. 3 for details). For
a mathematical analysis pointing out some limitations of the Mandelstamm
and Tamm relation, see [30].

1.3 The Fifties

1.3.1 Bohm’s Book on Quantum Theory

Twenty years after the magic late twenties, there had been no substantial
change in the foundations of quantum theory, and the Copenhagen interpre-
tation was rather well rounded and accepted. Possibly the best account of the
standard interpretation is Bohm’s 1951 “Quantum Theory” [31]. A central
subject of this text is the potentiality concept and the transition from poten-
tial to actual. According to the standard interpretation, a quantum probability
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does not mean that a given fraction of the ensemble has a particular value of
an observable before measurement; instead it represents a physical tendency
to realize that particular value. In other words, a physical system has the
potential to reveal a particular fact in a proper interaction (in particular in a
measurement). Notice that this view is much influenced by developments in
epistemology and the philosophical aspects of probability, of which an impor-
tant (later) exponent is Popper [32]. It is also required to address experiments
on individual systems.

However, also from the orthodox view, facts or events are not described by
quantum theory. The latter, without an appeal to classical concepts, would
have no meaning. This classical level is necessary to explain the preparation
and the results of any experiment, for example, to say without ambiguity that
a dial is in a given definite position:

“It is characteristic of the classical domain that within it exist
objects, phenomena, and events that are distinct and well-defined and
that exhibit reliable and reproducible properties ... It is this aspect of
the world that is most readily described in terms of our customary
scientific language

..quantum theory presupposes the classical level... it does not de-
duce classical concepts as limiting cases of quantum concepts.” [31]

Nonetheless, these classical definite properties and events must be con-
sistent with the quantum description via Born’s probability interpretation;
additionally, a definite result at the classical level implies a modification of
the corresponding potentialities at the quantum level. Classical definiteness
and quantum potentialities would, in this manner, complement each other in
providing a complete description of the system as a whole:

“The continuously changing potentialities and the discontinuous
forms in which these potentialities may be realized are, in fact, op-
posing, but complementary, properties of the electron, each of which
expresses an equally important aspect of the electron’s behaviour.” [31]

In other words, confronted with the difficulty to explain events, or facts,
within quantum theory itself, Bohr, and Bohm as the standard bearer of the
orthodox interpretation in [31], essentially give up: “the large scale behaviour
of a system is not completely expressible in terms of concepts appropriate at
the small scale level.” They cannot find definite facts or events in quantum
mechanics so, accepting their existence, they simply require a certain consis-
tency between quantum theory and the macroscopic level. The events would
occur through discontinuous jumps, which are not contained in the quantum
equations:

“One of the most puzzling features of quantum processes is the
transition of a system from one discrete energy level to another.
Throughout the process of transition, the potentialities associated with
the electron change in a continuous way, but the energy changes dis-
continuously.” [31]
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If they are not contained in the quantum equations, how can we predict the
time distribution for these events?

This lack of an explicit description of events has been considered by some
physicists as a major problem of the theory. Some have tried to modify or
complement quantum mechanics to include events and/or discontinuous jumps
explicitly, see Sects. 1.6.1 and 1.6.2 below.

1.3.2 Bohm’s “Causal” Theory

It is ironic that the same person who wrote the best account of the Copenhagen
interpretation also created the best-known hidden variable theory. Bohm’s
causal theory, which attributes a precise value to the position and the mo-
mentum of the particle, solves trivially, in a sense, the timing of events and
durations. However, the durations or events timed in Bohm’s theory are, in
general, “hidden” since we do not see the postulated trajectories.

For many the main problem with this theory though is that, according to
the standard claim, it is impossible to determine if it is true or not,3 although
the assumed equivalence of the predictions of the causal theory and the stan-
dard approach have been recently questioned and debated for time correlations
and double-slit experiments [38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48].

In any case, the theory has had and has quite a number of devoted fol-
lowers, see [49, 50, 51] for an account of this viewpoint. Several authors
[52, 53, 54, 55, 56, 57] have advocated the use of Bohm’s approach to in-
vestigate tunneling or arrival times. The merits of this proposal are explained
in Chap. 5 by C. R. Leavens.

1.3.3 Are There Quantum Jumps?

Schrödinger hated “quantum jumps” all along, and in 1952 he wrote a pa-
per criticizing once again “the modern analog of epicycles” [58]. He believed
that gradually changing amplitudes and wave packets would prove enough
to explain even those experiments where the probability interpretation of his
waves in terms of localized particles and jumps seemed most natural (the
Wilson chamber, for example), all the while accepting that the language of
quantum jumps could be a convenient shorthand for describing a wide range
of phenomena. Nonetheless, in his view, this attribute of convenience should
not make us think that quantum jumps could be taken literally.

He also criticized the arbitrariness of the choice of energy levels when two
microsystems interact, the transition probability concept, as evaluated from
time derivatives, and the interpretation of stationary scattering wave functions
in terms of quantum jumps (“Where anything happens, we are not facing pure
energy states”).

3 A similar comment is valid for the stochastic interpretations [33, 34, 35, 36, 37].
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Born answered that

“any of us theoretical physicists would use equivalent mathematical
methods, and our prediction for the experimental verification would be
practically the same.” [59]

so the question was regarded by him more as a matter of philosophy than real
life physics.

Indeed, at that time, unlike today, experiments with individual systems
(one atom or one molecule) were out of question, so that there was no urgency
to consider the times of occurrence of single events as really observable quan-
tities. This lack of urgency is well represented in the following excerpt from
Schrödinger:

“We never experiment with just one electron or atom or (small)
molecule. In thought experiments we sometimes assume that we do,
this invariably entails ridiculous consequences... In the first place it is
fair to state that we are not experimenting with single particles any
more that we can raise Ichthyosauria in the zoo.” [58]

In modern times, the idea that the wave function describes reality and
that it does not merely determine probabilities for real events is defended
by a number of approaches, such as Bohmian mechanics and others. For Zeh
[60], in particular, the discontinuous events (quantum jumps, collapses), and
those particle-like aspects that seem to occur during measurements, would
only be apparent discontinuities in time in the form of smooth, though very
fast, processes of decoherence induced by the environment. In order to ex-
plain the observation of only one definite individual outcome among the pos-
sibilities represented in the density matrix, Zeh proposes splitting or branch-
ing of the observer’s identity, following a variant of Everetts many-worlds
interpretation [61].

As mentioned in a footnote above, quantum jumps are incorporated into
some extensions and modifications of quantum mechanics, which we shall
enumerate later in Sect. 1.6.1.

1.3.4 Time-of-Flight (TOF) Experiments

Time-of-flight experiments began in the 1940s and the 1950s. Quite obvi-
ously they measure a time quantity that regards quantum objects (atoms
and molecules), for which the translational motion has nonetheless been al-
most invariably interpreted in classical terms. Due to the masses, velocities,
and distances involved, this classical analysis of the arrival times is generally
justified for most TOF experiments, and it did not trigger the need for a quan-
tum theoretical treatment. The quantum nature of the translational motion
in TOF experiments has, however, become evident more recently by means of
interference effects among different time (rather than spatial) slits [62], and
by the atomic realization of the “diffraction in time” predicted by Moshinsky
in 1952 [63], see also Sect. 3.6.3.
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1.3.5 Quantum Clocks and Their Limitations

A clock may be defined as a system with a dynamical variable, say a pointer
position, having a simple time dependence, so that the value of the parametric
time t may be obtained from it. It was soon realized by Salecker and Wigner
[64] that the quantum nature of the pointer observable would imply some
uncertainty product relation and limit the accuracy. In later theoretical ap-
plications of simple clock models (by Peres [65] and many others) the clock is
coupled to a system to measure, as a stopwatch, the duration of a certain pro-
cess or the time of occurrence of some events. Similarly, accuracy limitations
may be expected, as discussed by Aharonov and coworkers [66] (see Chap. 8
for further discussion of this topic and quantum clocks in general).

The use of clocks for measuring time observables also poses the problem
of connecting defined “ideal” time quantities (i.e., based solely on imposing
certain properties and on the system state, without explicitly considering extra
degrees of freedom) with the operationally defined quantities that emerge from
the coupled system-clock models or from actual experiments [67].

1.3.6 Atomic Clocks

Independently of the works on model quantum clocks described before, ac-
tual atomic clocks have undergone an impressive development reaching frac-
tional frequency uncertainties below 10−15 [68]. Modern navigation systems,
measurement of distances and fundamental constants, mobile telephones and
communications, digital television, and many other industrial, commercial,
and scientific activities need the accuracy provided by atomic clocks and mo-
tivate a continuous effort to improve them. Louis Essen, at the National Phys-
ical Laboratory in the UK, constructed in 1955 the first atomic clock, which
performed better than the Earth’s rotation or the best pendulum or quartz
clocks; it used a microwave transition of the caesium-133 atom to calibrate
the frequency of an external quartz oscillator. Once the oscillator frequency
is fixed and stable, the clock sets the time by counting the number of oscilla-
tions. The idea of using atomic transitions to define a standard of frequency,
and thus a clock, traces back to I. Rabi in 1944; another important early con-
tribution was the invention by N. Ramsey of the “separated oscillating fields”
interferometry, in which the atoms cross two field regions and spend a time
in free flight between them. Increasing this time narrows the fringes of the
interference pattern for the probability to excite the atom, which leads to a
more accurate lock of the external oscillator frequency to the atomic transi-
tion frequency [69]. The most advanced atomic clocks nowadays use a variant
of this principle in a vertical (fountain) configuration.

Rapid progress in national laboratories led to the definition of the second
in 1967 as 9,192,631,770 cycles of the radiation corresponding to the transition
between two hyperfine energy levels of the ground state of the caesium-133
atom.
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Quantum mechanics is a crucial ingredient of modern time and frequency
standards, first of all, because the basic physical process is a quantum tran-
sition. Recent developments make quantum mechanics even more relevant
because of a tendency to use colder and colder atoms to narrow the reso-
nance peak. (For an alternative, see [70].) This implies the need to consider
the atomic motion quantally, in free flight settings (taking into account recoil
effects [71] and quantum reflection from the fields [72]) or in traps, where the
quantization of vibrational levels provides a way to circumvent the Doppler
effect with tight confinement (Lamb–Dicke effect). In addition, other quan-
tum effects have to be taken into account: the “quantum projection noise”
[73], in particular, is due to the statistical character of quantum mechanical
laws so that a finite number of experiments to determine the population of
excited atoms provide averages with fluctuations around the “true average”
corresponding to infinitely many experiments. Quantum entanglement among
the atoms has also been proposed to improve the accuracy [74, 75]. We refer
the reader to any of the numerous recent books and reviews on time and fre-
quency standards, see e.g. [76, 77] for further information on this fascinating
topic.

1.4 The Sixties

We have picked up four influential contributions in the 1960s by Smith,
Aharonov and Bohm, Allcock, and Aharonov–Bergmann–Lebowitz.

1.4.1 Smith, 1960

Quite surprisingly, there was no standard operator treatment for quantum
lifetimes until Smith’s work in 1960 [78]. His complaint about the lack of a
formal theory for the lifetime is to some extent still valid 40 years later for
other time quantities,

“It is surprising that the current mathematical apparatus of quan-
tum mechanics does not include a simple representation for so em-
inently observable a quantity as the lifetime of metastable entities
... Unlike other dynamical variables, for which corresponding opera-
tors are available, the lifetime is usually computed by various indirect
devices.” [78]

Eisenbud and Wigner were precursors of Smith’s work by interpreting the
energy derivative of the scattering phase shift as a time delay [79, 80]. Since
then there has been a considerable interest among quantum scattering theo-
rists to define and study lifetimes, delay times, and other characteristic times.
Chapter 2 reflects this trend.
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1.4.2 Aharonov–Bohm, 1961

A paper by Aharonov and Bohm in 1961 [15] is an interesting example of
the difficulties associated with the time–energy uncertainty principle. At that
time it was generally believed, as we may still find in some textbooks, that a
measurement of energy must have an uncertainty

δE ≥ h/δt , (1.6)

where δt is the time duration of the measurement. This had been justified with
examples by such heavyweights as Landau and Peierls or Fock and Krylov.
However, Aharonov and Bohm provided counterexamples and showed that
the energy can be measured with arbitrary accuracy in an arbitrarily short
time.

As part of their analysis they considered a free particle’s motion as a clock
to measure time and introduced a time operator

T̂AB =
m

2

(
ŷ
1
p̂

+
1
p̂
ŷ

)
(1.7)

by simple symmetrization of the classical expression for the time when a par-
ticle with momentum p, initially at the origin, passes point y, t = my/p. With
a sign change this becomes the time of arrival at the origin for a particle that
at time t = 0 is at point y with momentum p. The corresponding operator
and eigenfunctions have been studied in detail [20, 81]. The operator is maxi-
mally symmetric, which is the nearest best thing to a self-adjoint operator; it
satisfies a conjugate relation with the Hamiltonian and therefore implies an
“ordinary” uncertainty relation. Other aspects of this construction, its rela-
tion to Kijowski’s distribution (Sect. 1.5.1), and possible generalizations are
considered in Chap. 10.

1.4.3 Allcock, 1969

In a series of three papers published in 1969, Allcock tried to introduce a
particular time observable, the time of arrival, in the quantum formalism
[18, 82, 83]. His conclusion was a negative one, in line with the pessimism of
Pauli. We have analyzed Allcock’s work in detail along the years and have
found flaws in each set of his detailed arguments, confirming a preliminary
intuition of Wigner [84]. These arguments can be classified in three main
groups:

1. Pauli’s “theorem”.
2. Quantum mechanics with sources.
3. Using complex potentials as detector models.

Pauli’s argument is easily sidestepped with the aid of POVMs, as discussed
earlier and in more detailed manner in Chap. 10. We shall next briefly com-
ment on the remaining two items.
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Quantum Mechanics with Sources

Allcock defined a “source” by imposing the following condition on the wave
function (in one dimension)

〈x|ψ(t)〉 = 0 , t < 0 , x > 0 , (1.8)

in other words, by confining the wave in the left axis up to t = 0. He also
showed that the solution of the Schrödinger equation subject to (1.8) is given
by

〈x|ψ(t)〉 =
1

h1/2

∫ ∞

−∞
dE ei(2mE)1/2x/�e−iEt/�χ(E), x > 0 , t > 0 , (1.9)

with
χ(E) =

1
h1/2

∫ ∞

−∞
dt 〈x = 0|ψ(t)〉eiEt/� . (1.10)

Note that χ(E) is not a standard energy amplitude but the Fourier transform
with respect to time of the wave function at the source point. Since (1.9)
includes negative energies, Allcock thought that Pauli’s “theorem” could per-
haps be avoided in this way. He also realized that the final (i.e., after infinite
time) total norm to the right of a certain point X is given by the integral

P (x > X)t→∞ = lim
t→∞

∫ ∞

X

dx|〈x|ψ(t)〉|2 =
∫ ∞

0

dE

(
2E
m

)1/2

|χ(E)|2 (1.11)

(note the lower limit in the energy integral) and identified this probability,
as in classical mechanics, with the total arrival probability. He then, using
independent arguments, derived an arrival-time distribution in contradiction
with this equation because it had contributions from the negative energies too,
so he concluded “unequivocally that an ideal concept of arrival time cannot be
established for the problem with sources (−∞ < E < ∞).”

This question has been reexamined recently [85]. It turns out that one can
express the source solution (1.9) as a standard initial value problem by using
contour deformation in the complex momentum plane. In particular, for free
motion on the full line, the negative-energy contribution is exactly equal to
the contribution of negative momenta in the standard integral expression of
ψ(t) over plane waves

〈x|ψ(t)〉 =
∫ ∞

−∞
dp 〈x|p〉e−iEt/�〈p|ψ(0)〉 . (1.12)

In classical mechanics the particles with negative momentum cannot reach a
point with positive x and t when the ensemble is initially confined within the
left half line. By contrast, the quantum mechanical wave at x > 0 and t > 0
is affected by negative momentum components [86]. Thus Allcock’s classical
assumption amounts to incorrectly neglecting this quantum contribution, as
already noted in [87].
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Complex Potentials

Allcock tried to reinforce his formal arguments with specific models for detec-
tion and chose a complex, imaginary potential step

V (x) = −iV0Θ(x) . (1.13)

He found that when V0 is very large the particle is not absorbed (i.e., detected)
but reflected. In the opposite limit, when V0 → 0 the particle is absorbed, but
in a very large length, so the resolution to determine where or when the
particles arrive is very poor.

We know nowadays that Allcock’s results are not general. It is possible
to construct, using inverse scattering techniques, potentials that absorb es-
sentially the full wave packet in a very short spatial interval [88, 89, 90, 91].
For plane waves this interval can be made arbitrarily small. For wave pack-
ets the length can be small but not zero because of a peculiar property of
quantum perfect absorbers; they exactly reproduce the behaviour of the wave
function defined in the absence of the absorber. Therefore, they must accu-
mulate and give back norm to reproduce the “backflow effect” [92, 93], by
which wave functions without negative momentum components have negative
current density at certain time and position intervals [94].

1.4.4 Aharonov–Bergmann–Lebowitz, 1964

In quantum mechanics the results of measurements in the future are only
partially constrained by the results of measurements in the past. Thus, the
concept of quantum state, when defined by the results of measurements in
the past only, is time-asymmetric. The two-state vector formalism of quantum
mechanics (TSVF), originated in a seminal work of Aharonov, Bergmann, and
Lebowitz (ABL) [95], removes this asymmetry. In this approach, a system at
a given time t is described completely by a two-state vector

〈Φ| |Ψ〉 , (1.14)

which consists of a quantum state |Ψ〉 defined by the results of measurements
performed on the system in the past relative to the time t and of a backward-
evolving quantum state 〈Φ| defined by the results of measurements performed
on this system after the time t.

An important and at times controversial application of the TSVF has
been the weak measurement theory [96], which allows to see that systems
described by some two-state vectors can affect another system at time t in a
very peculiar way. This has led to the discovery of numerous bizarre effects.
All these questions are treated in detail by Yakir Aharonov and Lev Vaidman
in Chap. 13.4

4 See also other references to weak measurements in Sects. 1.6.3, 7.4, 5.6 and in
Chap. 11.
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1.5 The Seventies: the Zeno Effect, TOA Distributions,
POVMs

1.5.1 Kijowski’s Time-of-Arrival Distribution

Kijowski noted that four essential characteristics uniquely determine the clas-
sical arrival-time distribution Π(t; f) at a point X (Π is a function of time
of arrival t and a functional of the phase-space distribution f) [97]. He
then obtained a quantum distribution ΠK by demanding these properties
in the quantum case (the distribution itself had been obtained previously
by Allcock [18, 82, 83]). The quantum distribution has been later associated
[81, 98, 99, 20] with the POVM of the Aharonov–Bohm maximally symmet-
ric [100] time-of-arrival operator [15], which has a degenerate set of improper
“eigenstates” |t, α〉 (with the α = ± associated with left or right arrivals, and
t the eigenvalue) that provide a nonorthogonal resolution of the identity. This
time-of-arrival distribution,

ΠK(t;ψ(t0)) =
∑

α

|〈t, α|ψ(t0)〉|2 , (1.15)

is obtained in a “predictive manner” from the wave function at t0. Note that
t is the time span from t0 to the arrival instant. Alternatively, due to the
“covariance” of the distribution, we may use ΠK(t;ψ(t0)) = ΠK(0;ψ(t+ t0)).
In words, the arrival-time distribution may be computed “on the spot” for
each time instant by evaluating the overlaps between the wave function and
the “crossing states” corresponding to the arrival instant t = 0. This is a
useful change of perspective that has made possible to generalize Kijowski’s
distribution for interaction potentials [101] or for multiparticle systems [102],
something that could not have been achieved by means of the original deriva-
tion or from the free motion time-of-arrival operator. We will reformulate
these points in Chap. 10.

Kijowski himself considered a relativistic version of the arrival-time dis-
tribution [97]. This has been retaken by several authors in later times, see
e.g. [103].

The status of the distribution ΠK(t) should be understood as completely
parallel to other distributions, such as |ψ(x)|2 for positions. That is, they
are not predictive for the actual location, be it in time or space, of a single
realization, but they are predictive, in an ideal manner, for the distribution of
measurements. This character of being ideal means that the proper apparatus
must be found to realize it! In this vein, a recent series of articles that model
the measurement of the first spontaneous fluorescence photon emitted by an
atom excited by a localized laser beam culminates in the description of an
operational procedure that provides Kijowski’s distribution in a well-defined
limit [104, 105, 67, 106].
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1.5.2 Zeno Effect

The suppression of transitions due to frequently repeated, first-kind (instan-
taneous and collapsing) measurements in the limit of infinite frequency was
already noticed by Allcock for the arrival time, i.e., for the transition from left
to right subspaces in the real line [18]. The effect was later generalized and
examined in a mathematically rigorous way by Misra and Sudarshan [107],
who named it “Zeno’s paradox in quantum theory” [108]. Even though they
paid attention mostly to the decay of unstable particles, these authors sought,
in general, a “trustworthy algorithm for the probability that the particle makes
a transition from a preassigned subspace of states to the orthogonal subspace
sometime during a given period of time”.

They considered that a “natural interpretation” of a continuous observa-
tion in this period is a sequence of instantaneous collapses into the original
subspace, followed by normal Schrödinger evolution. They then showed that
this seemingly natural approach prevents any transition in the limit δt → 0.
Misra and Sudarshan considered this answer physically unacceptable and con-
cluded that the “completeness of quantum theory must remain in doubt until
a proper algorithm is found for the above probabilities.”

Misra and Sudarshan speculated on physical grounds that a hypothetical
operator-based algorithm should have a number of properties that essentially
coincide with those of generalized resolutions of the identity or POVMs. They
even “predicted” the existence of a unnecessarily self-adjoint time operator as
the first moment of the POVM. It thus appears that the program sketched
by these authors has already been implemented for the free-motion arrival
time. As a matter of fact, Kijowski had formulated his distribution 2 years
before, but the explicit connection with POVMs and the time-of-arrival op-
erator is much more recent [81, 98, 99, 20, 109]. It does not seem, however,
that finding an optimal POVM (“optimal” in some suitably defined sense) for
a specific time quantity is a simple matter. In other words, the generaliza-
tion of Kijowski’s distribution for other characteristic times is not necessarily
straightforward [20].

The Zeno effect is still much debated nowadays and subjected to exper-
imental scrutiny too. For modern reviews on the Zeno effect, see [110, 111].
Some recent works study its physical origin [112] (as a consequence of the
initial-state reconstruction and short-time deviations from exponential decay,
see Chap. 2), and its disappearance by increasing the distance between the
detector and the decaying system [113].

1.5.3 Times of Occurrence in Quantum Mechanics and POVMs

We have already mentioned several times the POVMs and the corresponding
nonorthogonal resolutions of the identity. Helstrom [114] and Holevo [115] be-
came aware of the possibilities of these concepts to describe time observables.
Srinivas and Vijalakshmi formulated the POVM program quite explicitly in
this regard [109]
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“there is no single unique time observable, but actually a whole
class of time of occurrence observables – one associated with each ob-
servable event that could occur. In fact some of the confusion on the
notion of time in quantum theory is mainly due to the fact that it is
not appreciated that there is nothing like the time observable, but a
class of time of occurrence observables associated with each physical
system. The main objective of the theory should be to provide a mathe-
matical characterization of such time of occurrence observables so that
one arrives at a prescription for calculating say, the probability that
an event occurs in a given interval of time.”

They thus advocate the use of POVMs based on the theory of continuous
measurements and subject to the general requirements of causality (the results
up to time t should not depend on later times) and time-translation invariance
of the theory (or “time covariance”).

1.6 Some Recent Trends

1.6.1 Theories that Include Events in Quantum Mechanics

According to the dictionary, “event” is anything that “takes place,” “hap-
pens,” or “occurs.” The event for a classical system could be simply defined
as “the realization of some specified value of a variable at a given instant”.

In classical mechanics the questions: “When does an event occur?” (e.g.,
when does a particle moving in one dimension cross the point X?) and “What
is the probability distribution of the corresponding instants?” (e.g., the time-
of-arrival distribution at X) are no more problematic than say “What is the
position of the particle at t = 0?” This does not mean they are of the same
nature, though. There are some differences that may become important in the
quantization process:

• For a given t, only one x is possible in the trajectory, whereas for a given
x, there may be several crossing instants t1, t2, . . ..

• The particle must be somewhere at time t, whereas the particle may or
may not arrive at the selected point X .

In spite of these differences, one can define time distributions, in general,
just for a subensemble of the original ensemble of particles, by ordering the
crossings as first arrivals, nth arrivals, or last arrivals. It is also possible to
define time distributions for all arrivals, irrespective of their order. For a more
detailed discussion, see [87].

However, things are not so simple in quantum mechanics. The solutions
of the standard equations of quantum mechanics are continuous and proba-
bilistic, and, as discussed in Sect. 1.3.1, they do not contain the abrupt events
explicitly. Are events somehow implicit in the formalism, in the same way
that classical statistical densities smooth out the individual occurrences of the
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classical events? The answer seems to be negative in general: the theorems by
Kochen–Specker [116] and Bell [117] discourage a direct “naive realist” sta-
tistical interpretation of quantum theory.5

It might be possible to include events explicitly by modifying quantum
theory without too much violence to the well-established results. This is the
case for example of the spontaneous collapse theory of Ghirardi, Rimini, and
Weber [119], and related approaches such as the “event-enhanced quantum
theory” (EEQT) of Jadczyk and Blanchard [120, 121]. The modification of
Schrödinger’s equation by adding a random fluctuating collapse has been ex-
amined from very many different points of view. For a review, see [122].

Another approach, quite different in spirit and techniques, aspires to in-
clude events as part of the formalism without any modification of the dynam-
ics. This is the approach taken by the followers of the “quantum histories”
or “consistent histories” program [123, 124, 125, 126, 127, 128, 129], which is
reviewed in Chap. 6. The basic idea of consistent histories is to decompose
the density operator ρ(t) by dividing the total evolution into smaller intervals
and using resolutions of the identity (normally, but not only, by projector
decompositions; see also [130, 131, 132] for POVM decompositions) at the
intermediate times. One then looks for cases where the interference terms
without a classical event interpretation do not contribute. This would allow
for a consistent assignment of probabilities to classical-like histories.

These ideas were applied by Yamada and Takagi [133, 134, 135] to the
arrival time. Interference between amplitudes associated with Feynman paths
that contact or does not contact the arrival point X within a specified finite
time interval does not vanish; so, according to the premises of this interpre-
tation, probabilities cannot be defined for the events of arriving or not arriv-
ing at X within such a time interval (there are, however, some exceptional
cases [136, 133]). Later, Halliwell and Zafiris [137] pointed out that coupling
the particle to a thermal bath allows the definition of coupling-dependent,
arrival-time probabilities.

In any case, if the quantum mechanical formalism is regarded as a pool of
potentialities to be realized by appropriate measurements or interactions, the
nonvanishing interferences just described are not a major stumbling block
[136, 87]. They tell us that the arrival of the particles, left alone, is not
classical-like, but they do not preclude the fact that proper interactions (mea-
surements) lead to arrival-time distributions that can be modeled theoreti-
cally. It is moreover possible to select one of them as being optimal in some
specified sense, as it occurs with Kijowski’s distribution.

1.6.2 The Resurrection of Quantum Jumps

Apart from Bohm’s book, standard texts on quantum mechanics have kept
basically silent about quantum jumps (in the old sense). This is true even
5 Only “contextual” and “nonlocal” hidden variable theories would be allowed, see

e.g. [118].
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for the first monographs written by Pauli or Dirac. However, the modern ad-
vances in the manipulation of single atoms have fostered new theoretical tech-
niques, in particular “quantum trajectory” or “quantum jump” approaches
[138, 139, 140, 141], that solve the master equation for an open system, typ-
ically an atom interacting with laser fields and a background bath, by means
of many individual histories where a series of photon detections are repre-
sented by wave-function jumps. These “trajectories” provide the smooth mas-
ter equation solution when averaged and make the statistical (smooth) and
individual (abrupt) descriptions compatible. The latter is directly comparable
with the experimental records of successive photon detections for individual
atoms. They can explain, for example, the statistics of dark periods of individ-
ual atoms whose ground states are coupled to a metastable and a rapidly de-
caying state by two lasers. These modern quantum jumps are not interpreted,
e.g., by Cook [142], as intrinsic properties of the isolated system, but as sud-
den counting events of systems subject to frequent measurements. These mea-
surements would effectively prevent the development of superpositions (by re-
peated collapses) [142] and would lead to dynamics governed by rate equations
rather than by Schrödinger’s equation. The Zeno effect is always a menace for
the occurrence of the jumps although, Cook argues, it is much more difficult
to realize when detecting spontaneously emitted photons. Stenholm reasons
similarly that an external intervention is necessary (caused by an observer or
not) to interpret the time evolution in terms of a stochastic sequences of in-
stantaneous transitions [143], stressing that the justification of the necessary
master equations is not always an easy task. The connection between consis-
tent histories and quantum jump techniques has been discussed by Brun [144].

“Quantum jump” techniques have been applied recently to simulate a
time-of-flight experiment for individual atoms, see [104, 105, 67, 106] and
Sect. 8.5.3. The operational time-of-arrival distribution corresponds in this
case to the detection of the first spontaneously emitted photons after the
excitation induced by a laser. It is possible, by subtracting the detection delay
for the atom at rest, to obtain exactly the quantum current density from the
distribution of first photons, in the limit of a large Einstein coefficient [104,
105]. With some additional manipulations consisting of a previous filtering of
the initial state to compensate for detection losses, it is also possible to obtain
Kijowski’s distribution [67, 106].

1.6.3 Tunneling Times

The tunneling time is an example of a duration type of quantity. Actually
the word “tunneling” here is a red herring since the same conceptual problem
arises without tunneling, even for free motion. The actual question is:

“How long does a particle take to traverse a spatial region?”

It is true, however, that tunneling enhances some of the puzzling aspects of
the possible answers. There are hundreds of papers devoted to tunneling or



1 Introduction 21

traversal times. The modern stage of the tunneling-time conundrum started
with a letter by Büttiker and Landauer in 1982 [145]. They set a “traversal
time” as the time characterizing the transition between sudden and adiabatic
regimes in oscillating potential barriers. Very many different proposals ap-
peared subsequently in the literature throughout the 1980s, with each author
tending to defend their own time as “the good one.” The controversy has
kept going all through the 1990s, moving however in the direction to a certain
degree of consensus: that there is no single quantity that contains the whole
and only truth about timing the particle’s traversal, see e.g. [146]. The tun-
neling time is in fact one example of quantization of a classical quantity that
involves products of noncommuting observables: a unique, classical question
corresponds to different quantum versions. Comprehensive theories [147] and
experiments [148] show explicitly several of these times.

For previous review articles see [149, 150, 151, 152, 153, 154, 155, 146]. In
this book Chaps. 2, 5, 7, 8, 11, and 12 review extensively various aspects of
the timing of particle traversal through a given region, and the contributions
of different authors. Here, we shall introduce the subject by summarizing an
“umbrella theory,” the BSM approach,6 which has the merit of describing
many different proposals of tunneling times as particular cases of a single
formal framework [147], providing a unifying perspective, useful to relate,
classify, and study the properties of different times. It dissolves the puzzling
fact that many different times have been or may be defined, even though
not all proposals may be included as particular cases, in particular the times
derived from Bohm’s interpretation, cf. Chap. 5.

The BSM Approach

In classical mechanics the transit times for a region of space can be easily
defined from the trajectories. If the region contains a potential barrier and the
particles are sent toward the barrier at time t = 0, the ensemble of classical
particles can be divided into particles that will eventually pass the barrier
and into particles that will not pass the barrier. This means that the average
dwell time can be separated into two contributions

τD = PT τT + PRτR , (1.16)

where PT and PR are the probabilities for transmission and reflection, and τT,R
are the average dwell times for the transmission and reflection subensembles.
In the question “how long does a transmitted particle take to cross the barrier”
there are, apart from time itself, two observables implied: (1) “being at the
barrier region,” D̂ =

∫ b
a
dx |x〉〈x|, which is a projector (D̂2 = D̂) and (2)

“being transmitted,”

T̂ =
∫ ∞

0

dp |p−〉〈p−| . (1.17)

6 It was termed “systematic projector approach” in the original paper.
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The states |p−〉 are scattering eigenstates of the Hamiltonian, formed by a
combination of incident plane waves, suitably chosen to produce the outgoing
plane wave |p〉, see Chap. 2. “Being reflected” corresponds to the complemen-
tary projector R̂, such that T̂ + R̂ = 1. The operator D̂, however, does not
commute with T̂ or R̂. Thus, the quantum mechanical dwell time7

τD =
∫ ∞

0

dt 〈ψ(t)|D̂|ψ(t)〉 (1.18)

can be decomposed in many different ways depending on the decomposition
chosen for D̂ [147]. Using T̂ + R̂ = 1 and D̂D̂ = D̂ we may write, for example,

D̂ =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(T̂ + R̂)D̂ = T̂ D̂ + R̂D̂,

(T̂ + R̂)D̂(T̂ + R̂),
D̂(T̂ + R̂)D̂ = D̂T̂ D̂ + D̂R̂D̂,
1
2

(
[T̂ , D̂]+ + [T̂ , D̂]− + [R̂, D̂]+ + [R̂, D̂]−

)
.

. . .

(1.19)

These are some of the simplest decompositions, but there are infinitely many
possibilities. The first decomposition leads to a separation of the dwell time
into reflected and transmitted parts, as in the classical expression (1.16). How-
ever, the operators T̂ D̂ and R̂D̂ are not Hermitian and therefore the corre-
sponding times turn out to be complex quantities

τTDT =
1
PT

∫ ∞

0

dt 〈ψ(t)|T̂ D̂|ψ(t)〉 , (1.20)

τRDR =
1
PR

∫ ∞

0

dt 〈ψ(t)|R̂D̂|ψ(t)〉 . (1.21)

The stationary wave versions, see Sect. 8.4 for more details, were obtained by
Leavens and Aers [156] combining two time scales of the Larmor clock and
by Sokolovski and Baskin, using a classification of paths in the path integral
formulation of the wave function [157, 158, 159].8 For opaque barriers, the
moduli of the complex times coincide with the traversal time obtained by
Büttiker and Landauer [145].

In the second decomposition there are two terms, T̂ D̂T̂ and R̂D̂R̂, with
a simple classical-like interpretation; they lead to dwell times for the “to-
be-transmitted” and “to-be-reflected” components of the wave function [162,
163, 164]. Note, however, the presence of interference terms, such as T̂ D̂R̂,

7 See Chaps. 2, 7, and 11 for discussions on the dwell time concept in quantum
mechanics.

8 A different complex time had been defined before by Pollak and Miller [160] and
Pollak [161], with real and imaginary parts corresponding to the time averages of
the real and imaginary parts of the quantal microcanonical flux–flux correlation
function.
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without a classical counterpart. The interference terms are avoided in the
third decomposition by first imposing particle presence in the selected region
and then separating into to-be-transmitted and to-be-reflected components. Is
this “THE” answer? The “good” resolution? While this decomposition leads
to (1.16) and avoids interferences, it is not free from nonclassical features:
the resulting times are not additive, because of the presence of two D̂ oper-
ators, so that the time for going from a to c is not the sum of the times for
going from a to b plus the times for going from b to c. Finally, the last de-
composition shown is based on separating the Hermitian and anti-Hermitian
parts of T̂ D̂ and R̂D̂. Interestingly enough, it may be associated with Larmor
clock or weak measurements, where a weak magnetic field is used to rotate
the spin of the electron crossing the region [165, 166], see Chaps. 7, 8, 11,
and other applications of the Larmor clock concept in Chap. 9. The amount
of precession should be an indication of the traversal time. This sounds like
quite a good idea, but unfortunately the resulting time may be negative. . . Is
this necessarily a bad thing? It is if one is looking for classical-like quantities
and nothing else; it is not if one simply wants to know how nature behaves in
different quantum scenarios corresponding to the same classical question.

As in other joint measurement problems involving noncommuting observ-
ables, the quantum multiplicity described above is linked to the lack of a
proper joint probability distribution for being in the barrier and being even-
tually transmitted, but it is possible to define “marginal” and “conditional”
probability distributions

PD ≡ 〈ψ(t)|D̂|ψ(t)〉 , (1.22)

PT ≡ 〈ψ(t)|T̂ |ψ(t)〉 , (1.23)

PD|T ≡ 〈ψ(t)|T̂ D̂T̂ |ψ(t)〉/PT , (1.24)

PT |D ≡ 〈ψ(t)|D̂T̂ D̂|ψ(t)〉/PD , (1.25)

and some of these decompositions have a simple interpretation in terms of
them. In particular, the transmission times derived from the second and third
decompositions are

τTDTT =
∫ ∞

0

PD|T dt, (1.26)

τDTDT =
1
PT

∫ ∞

0

PDPT |D dt . (1.27)

Notice that the following equality, which holds for a classical ensemble of
particles, is no longer valid in quantum mechanics:

PD|TPT = PDPT |D . (1.28)

Relation (1.28), when it holds (i.e., in the classical case), implies the equality
τTDTT = τDTDT – this is of course not generically true in quantum mechanics.
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Operational Models, Superluminality, Hartman Effect

At a less abstract level there are also operational models that define traversal
times associated with specific idealized measurements, e.g. by simulating two-
detector experiments [167] with one detector before and one detector after the
barrier [168].

It is possible that these models lead to quantities defined in the abstract
framework described above, as happens in the case of the Larmor clock. For
other experimental setups the connections between abstract or “ideal” results
and operational models may of course be more involved.

Other works have focused on describing the temporal behaviour of the
wave function and its main features, such as peaks or fronts. A striking phe-
nomenon is that in tunneling conditions the peak of the transmitted wave
packet may appear at the rear barrier edge even before the extrapolated peak
of the incident wave packet arrives at the front barrier edge. Related to this
situation is the “Hartman effect” [169]: the time of appearance of the trans-
mitted peak does not grow with the barrier width, up to a critical point where
the components above the barrier maximum start to dominate [147, 170], see
Sect. 2.4.1. Also, a sligtly absorbing medium may cause, for the appropriate
initial state, the simultaneous arrival of the wave packet peak at different loca-
tions [171, 172]. Similar effects have been experimentally verified for photons,
or microwaves [173, 174, 175, 176], and have led to considerable attention,
even in the mass media. A violation of relativistic causality is, however, not
implied [177, 178]. For further details, see Chaps. 2, 5, 7, 12, and 11.

1.7 Discussion

Understanding time in quantum mechanics is in fact intimately linked to un-
derstanding quantum mechanics itself, in particular, the transition between
the potentialities described by the formalism and actual events. However, we
are far from a consensus on how, and even if, this transition takes place.
Different solutions proposed for this theoretical lacuna amount to different
answers for several of the mysteries related to time in quantum mechanics.
We have paid particular attention to work done on “tunneling times,” and
“arrival times,” two topics that have been controversial throughout the past
two decades. Some results have been firmly established though, and much
progress has been achieved in avoiding a number of stumbling blocks. For ex-
ample, Pauli’s argument against the existence of a self-adjoint time operator
in quantum mechanics is not a problem when realizing that observables are
not necessarily linked to self-adjoint operators; similarly, difficulties pointed
out by other authors, most prominently by Allcock, have been overcome; the
multiplicity of quantum answers obtained for some unique classical questions
(such as the traversal time) has been also well understood and formalized
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with a compact systematic theory. Of course different theoretical or experi-
mental conditions may select one of them for a specific application. For the
arrival time, in particular, distributions, which are “optimal” with respect to
a number of classical constraints, have been identified.

All in all, we have reached a much better understanding of the phenomenol-
ogy and underlying theoretical issues concerning time observables in quantum
mechanics. Much remains to be done, and many issues are still contended, as
the diverse character of the contributions to this volume will make clear.
Nonetheless, we are convinced that the patient reader will have ample proof
in the following chapters of the improvement in our understanding time in
quantum mechanics that has taken place in the last decades. And we hope
that the same reader will in turn contribute and improve on this work.
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2.1 Introduction

Quantum scattering theory deals with collisions, namely, interactions that are
essentially localized in time and space. This means that the interaction poten-
tial must vanish rapidly enough in coordinate space, so that the wave packet
tends to free-motion incoming and outgoing asymptotic states before and after
the interaction is effective. The scope of scattering theory also includes “half-
collisions” or “decay processes” where the stage before the collision is ignored,
i.e., the evolution of the system is considered only from the interaction region.

This chapter reviews various quantities that have been proposed in scat-
tering theory to characterize the temporal aspects of collision. A quantum
wave packet collision with a potential barrier in one dimension (1D) is fully
described by the evolution of the wave function ψ(x, t) from the incoming to
the outgoing asymptotic states. However, the whole information contained in
ψ(x, t) is hardly required. A few well-chosen quantities are often enough to
provide a fair picture of the dynamics. In particular, one of these elementary
parameters is the transmission probability PT, but to describe the time depen-
dence we also need to quantify the duration of the collision, the arrival time
at a detector, the decay time of an unstable state, the asymptotic behavior at
short and large times, or response times, such as the time required to “charge”
a well or to achieve stationary conditions when a source is turned on.

In spite of the inherent time dependence of collisions, the treatises on
quantum mechanics or scattering theory concentrate on solutions of the time-
independent Schrödinger equation. This is in part because many scattering
experiments to obtain cross sections are performed in quasi-stationary condi-
tions and also because the stationary scattering states form a basis to analyze
the actual time-dependent collision. In many cases wave packet scattering is
relegated to justify the cavalier obtention by stationary methods of cross-
section expressions and occasionally to discuss resonance lifetimes. Another
widespread limitation of textbooks is the exclusive interest in the final results
of the collision at asymptotic distances and times, which has been generally
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justified because “the midst of the collision cannot be observed.” However,
while it is true that in many collision experiments only the asymptotic results
are observed, modern experiments with femtosecond laser pulses or other tech-
niques known as “spectroscopy of the transition state” do probe the structure
and the evolution of the collision complex [1]. Also, in quantum kinetic the-
ory of gases, accurate treatments must abandon the “completed collision”
approximation and use a nonasymptotic description, e.g. in terms of Möller
wave operators instead of S matrices, as in the Waldmann–Snider equation
and its generalizations for moderately dense gases [2].

The theory has to adapt to these new trends by paying more attention
to the temporal description of the collisions. Even if we restrict ourselves to
asymptotic aspects, the cross section does not contain the whole information
available in a scattering process, since it is only proportional to the modulus of
the S-matrix elements. Information on the phase is available from delay times
with respect to free motion. In fact, the full collision process and not just the
asymptotic regimes should be understood to control or to modify the products.
This has motivated a recent trend of theoretical and experimental work to in-
vestigate the details of the interaction region and the transient phenomena.

In this chapter we restrict ourselves to 1D scattering. Many physical sys-
tems can be described in 1D: the application of the effective mass approxi-
mation to layered semiconductor structures leads to effective 1D systems [3];
some surface phenomena are described by 1D models [4]; chemical reactions
can in certain conditions be modeled by effective 1D potentials [5]; and atomic
motion may be 1D in nanometric confining waveguides [6, 7]. Moreover, the
simplicity of 1D models has made them valuable as pedagogical and research
tools. They facilitate testing hypotheses, new ideas, approximation methods
and theories without unnecessary and costly complications. For the same rea-
sons they are frequently used to examine fundamental questions of quantum
mechanics. In particular, the time quantities treated in this book, such as tun-
neling or arrival times, have in most cases been examined in 1D models. Many
results for 1D are inspired by results previously obtained in 3D, although the
direct translation is not always trivial or possible. This is because 3D colli-
sions with spherically symmetric potentials are described on the half line, by
decomposition into partial waves, whereas 1D collisions involve the full line
and a doubly degenerate spectrum.

The chapter is organized as follows: Section 2.2 provides a minimal
overview of formal 1D scattering theory. The treatment is “formal” because no
mathematically rigorous proofs are given. Instead, we summarize the operator
structure of the theory and the results needed to define characteristic times
later on. For a more rigorous mathematical presentation, see e.g. [8]. Sections
2.3, 2.4, and 2.5 are devoted to the dwell time, the delay time, and decay times
(the exponential decay and its deviations), respectively. Quantities related to
the tunneling time conundrum are scattered in several parts of the book.
In this chapter, Sects. 2.4.1 and 2.4.4 discuss the Hartman effect and negative
delays, while Sect. 2.6 discusses the role of the Büttiker–Landauer “traversal
time” in the time dependence of evanescent waves. A detailed discussion of
the arrival times is left for Chaps. 5, 6, and 10.
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2.2 Scattering Theory in 1D

2.2.1 Basic Premises and Notation

Let Ĥ = Ĥ0 + V̂ be the Hamiltonian operator for a single particle in 1D,
where

Ĥ0 =
p̂2

2m
(2.1)

is the kinetic energy operator in terms of the momentum operator p̂, and V̂
is a “local” potential operator with coordinate representation

〈x|V̂ |x′〉 = δ(x − x′)V (x) . (2.2)

V (x) must vanish for large values of |x| so that the Möller operators, defined
below, exist.1 This may certainly be accomplished by finite-range potentials,
but spatial decays with infinite tails are also possible.

The plane waves |p〉 with coordinate representation given by

〈x|p〉 = h−1/2eixp/� (2.3)

are improper eigenstates2 of p̂ and Ĥ0, normalized according to Dirac’s delta
function,

〈p|p′〉 = δ(p− p′) . (2.4)

Closure relations (or resolutions of the unit operator 1̂) may therefore be
written in momentum or coordinate representation as

1̂ =
∫ ∞

−∞
dx |x〉〈x| =

∫ ∞

−∞
dp |p〉〈p| . (2.5)

2.2.2 Basic Abstract and Parameterized Operators

The state vector of the particle at time t is denoted as |ψ(t)〉 or simply as
ψ(t). We shall only deal with potentials such that at large times in the past
and future certain states ψ, the scattering states, tend (in a strong sense) to
freely moving asymptotic states φin and φout, respectively,

ψ(t) → φin(t), t → −∞ , (2.6)
ψ(t) → φout(t), t → ∞ . (2.7)

The central objects in the scattering theory are the abstract Möller operators.
They link the asymptotic states with ψ,
1 We shall not deal here with “step” potentials with different asymptotic levels on

both sides. For a detailed treatment of this case, see [9, 10] and references therein.
2 That is, not in the Hilbert space of square integrable states.
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ψ(t) = Ω̂+φin(t) , (2.8)

ψ(t) = Ω̂−φout(t) . (2.9)

Another important operator is

Ŝ = Ω̂†
−Ω̂+ , (2.10)

which links the two asymptotes,

φout(t) = Ŝφin(t) . (2.11)

It is also convenient to introduce the auxiliary “transition” operators T̂± as

T̂± = V̂ Ω̂± . (2.12)

The explicit definition of the Möller operators is given by infinite time (strong)
limits,

Ω̂± = lim
t→∓∞ eiĤt/�e−iĤ0t/� . (2.13)

The domain of these operators is the Hilbert space of square integrable states,
although it is very useful to consider an extension that can be applied on plane
waves and allows us to work in a momentum representation. To this end let
us first define the parameterized operators

Ω̂(z) = 1̂ + Ĝ0(z)T̂ (z) , (2.14)

T̂ (z) = V̂ + V̂ Ĝ(z)V̂ , (2.15)

where z is a complex variable with dimensions of energy, and Ĝ(z) = (z−Ĥ)−1

and Ĝ0(z) = (z − Ĥ0)−1 are the resolvents of Ĥ and Ĥ0. T̂ (z), V̂ , Ĝ(z) and
Ĝ0(z) are also related by

Ĝ(z) = Ĝ0(z) + Ĝ0(z)T̂ (z)Ĝ0(z) , (2.16)

T̂ (z)Ĝ0(z) = V̂ Ĝ(z) . (2.17)

We shall see that the matrix elements of the resolvents in coordinate represen-
tation are singular on the real positive axis and at poles on the negative real
axis (bound states). Further singularities may occur by analytical continuation
on the second energy sheet.

Note that the operators of scattering theory have abstract or parameter-
ized versions [11]. Confusion may arise if they are not properly distinguished.
The relation between abstract and parameterized operators is found by acting
with (2.13) on a square integrable state. The resulting infinite time limits can
be substituted by the following limits, see e.g., [12]:

Ω̂+ = lim
ε→0+

ε

∫ 0

−∞
dt eεteiĤt/�e−iĤ0t/� , (2.18)

Ω̂− = lim
ε→0+

ε

∫ ∞

0

dt e−εteiĤt/�e−iĤ0t/� . (2.19)
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Integrating, and introducing a closure relation in momentum,

Ω̂± =
∫ ∞

−∞
dp Ω̂(Ep ± i0)|p〉〈p| , (2.20)

T̂± =
∫ ∞

−∞
dp T̂ (Ep ± i0)|p〉〈p| . (2.21)

The action of these operators on plane waves is now well defined. In particular,
the improper eigenvectors of Ĥ are obtained by acting with the parameterized
Möller operators on the plane waves,

|p±〉 = Ω̂(Ep ± i0)|p〉 = |p〉 +
1

Ep ± i0 − Ĥ0

T̂ (Ep ± i0)|p〉 , (2.22)

where Ep = p2/(2m) is the energy of the plane wave and of the corresponding
eigenstate of Ĥ . This is the Lippmann–Schwinger integral equation for the
states |p±〉, which are composed of a “free” plane wave and a “scattering”
wave. To evaluate the coordinate representation and the asymptotic behav-
ior of the states at large distances, the matrix elements of the free-motion
resolvent are required,

〈x| 1

Ep ± i0 − Ĥ0

|x′〉 = ∓ im

�|p| e
±i|p||x−x′|/� . (2.23)

Equation (2.23) is obtained by introducing a resolution of unity in momentum
representation and using contour integration in the complex momentum plane.
Note that the two ways of approaching the real axis in (2.23), from below or
from above, imply different boundary conditions at large |x| for the two states
in (2.22): the scattering wave of |p+〉 is formed by outgoing plane waves moving
off the potential region, whereas the scattering wave of |p−〉 involves incoming
plane waves toward the potential region.

Since the plane waves |p〉 form a complete set, the following resolutions of
the operators Ω̂, T̂ , and S can be introduced:

Ω̂± =
∫ ∞

−∞
dp |p±〉〈p| , (2.24)

T̂± = V

∫ ∞

−∞
dp |p±〉〈p| , (2.25)

Ŝ =
∫ ∞

−∞
dp

∫ ∞

−∞
dp′ |p′〉〈p′−|p+〉〈p| . (2.26)

Strictly speaking, the operators in (2.24)–(2.26) are not identical to the ones in
(2.10), (2.12), and (2.13) since the former may be applied on plane waves. How-
ever, when acting on Hilbert space states they are equivalent so that, to avoid a
clumsy notation, the same symbols will be used. A momentum representation
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is therefore allowed for these operators, which in general involves distributions
(generalized functions such as Dirac’s delta or Cauchy’s principal part).

For real potential functions V (x) the norm is conserved throughout the
collision, 〈φin|φin〉 = 〈ψ|ψ〉 = 〈φout|φout〉. This means that the Möller opera-
tors are isometric, i.e.,

Ω̂†
±Ω̂± = 1̂ . (2.27)

As a consequence,
〈p±|p′±〉 = δ(p− p′) . (2.28)

In general the Möller operators are not unitary because the bound states are
not in their range. Contrast this to the operator Ŝ: it conserves the norm
too, but it is unitary because it maps the whole Hilbert space onto the whole
Hilbert space,

ŜŜ† = Ŝ†Ŝ = 1̂ . (2.29)

The scattering states ψ with incoming and outgoing asymptotes move far
away from the potential so they are orthogonal to the bound states {|Φj〉}
at large (positive or negative) times. Since the overlap amplitude 〈ψ|Φj〉 = 0
is independent of time, the space of bound states B is orthogonal to the
scattering states, namely to the range of the Möller operators. We shall always
assume that the ranges of the two Möller operators are equal to the subspace
of scattering states R and that the whole Hilbert space is the direct sum of
the subspaces spanned by scattering and bound states, H = R ⊕ B. This
assumption is known as asymptotic completeness,

Ω̂±Ω̂†
± = 1̂ − Λ̂ =

∫ ∞

−∞
dp |p±〉〈p±| . (2.30)

In this expression the “unitary deficiency” Λ̂ is the projector onto the subspace
of bound states,

Λ̂ =
∑

j

|Φj〉〈Φj | . (2.31)

Taking matrix elements in (2.26), the momentum representation of Ŝ is given
by

〈p|Ŝ|p′〉 = δ(p− p′) − 2iπδ(Ep − Ep′)〈p|T̂ (Ep + i0)|p′〉 . (2.32)

The collision conserves the energy, which is, asymptotically, kinetic energy.
That is why Ŝ commutes with Ĥ0 and its matrix elements are proportional
to an energy delta function. It is quite useful to factor out this delta function
to define an on-the-energy-shell S(E) matrix. Using

δ(p− p′) =
|p|
m

δ(Ep − E′
p)δpp′ , (2.33)

where δpp′ is the Kronecker delta,
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δpp′ =
{

1 if p = p′

0 if p �= p′
, (2.34)

and defining the matrix elements of S, Sαβ , by

〈p|Ŝ|p′〉 = |p|m−1δ(Ep − E′
p)Ssign(p)sign(p′)(Ep) , (2.35)

one finds

Ssign(p)sign(p′)(Ep) = δpp′ −
2iπm
|p| 〈p|T̂ (Ep + i0)|p′〉 , |p| = |p′| . (2.36)

The subscripts α, β = ± in the matrix elements Sαβ , denote the two possible
“channels,” which correspond to positive (+) or negative (−) momentum. A
difference between the 1D scattering on the full line (−∞ < x < ∞) and the
radial scattering on the half line (0 < r < ∞) is that in the former, the S
matrix is a unitary 2 × 2 matrix while in the later it is a complex number of
unit modulus.

2.2.3 Symmetries

Time Reversal Invariance. This symmetry holds for real potentials. It implies

Sαβ = S−β−α . (2.37)

Parity. Frequently the potential is symmetrical with respect to its central
position. In that case,

Sαβ = S−α−β . (2.38)

2.2.4 Eigenstates of Ĥ

The eigenstates of Ĥ given by the Lippmann–Schwinger integral equations
(2.22) behave asymptotically as a combination of two plane waves with pos-
itive and negative momenta. The factors multiplying these plane waves are
the reflection and transmission amplitudes according to the following table for
asymptotic, long-distance behaviour (assume for the time being that p > 0)

1
h1/2

{
exp(ipx/�) + Rl(p) exp(−ipx/�), if x ∼ −∞
T l(p) exp(ipx/�), if x ∼ ∞,

(2.39)

1
h1/2

{
T r(p) exp(−ipx/�), if x ∼ −∞
exp(−ipx/�) + Rr(p) exp(ipx/�), if x ∼ ∞. (2.40)
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For potentials of finite range that vanish outside [a, b] these are in fact exact
expressions for x < a and x > b.3

If p > 0, the boundary conditions in (2.39) define the states 〈x|p+〉 corre-
sponding to an incoming plane wave from the left, 〈x|p〉, while the boundary
conditions in (2.40) define the states 〈x|(−p)+〉 corresponding to an incoming
plane wave from the right, 〈x|−p〉. T (p) and R(p), with superscripts r or l for
right or left incidence, are the transmission and reflection amplitudes. A wave
packet peaked around a given |p+〉 would be dominated by the plane wave
|p〉 before the collision, whereas after the collision, there would be two pack-
ets, one reflected and one transmitted with probabilities |R(p)|2 and |T (p)|2,
dominated by | − p〉 and |p〉, respectively (see e.g., [13]).

For p < 0, however, the states determined by (2.39) and (2.40) correspond,
respectively, to 〈x|p−〉, with outgoing plane wave 〈x|p〉, and 〈x|(−p)−〉, with
outgoing plane wave 〈x| − p〉. A wave packet formed around |p−〉 would be
close to a plane wave |p〉 only after the collision occurs. To form this peculiar
outgoing state, the incoming asymptote must combine waves incident from
both sides of the potential barrier. This may of course be difficult to implement
in practice, but it does not preclude the usefulness of these states as basis
functions, and in general for applications where some control or selection of
the products of the collision is required.

The previous discussion should make clear that T (p), for p < 0, is not a
standard transmission amplitude, because it is not the amplitude of the trans-
mitted plane wave of the state |p+〉, p < 0. However, it analytically continues
the standard transmission amplitude (T (p) for p > 0) onto the p < 0 domain,
so the term “transmission amplitude” will be used irrespective of the sign of
p, even though the physical meaning is different for the two possible signs. Of
course a similar analysis applies for the reflection amplitudes. According to
our notational convention, positive arguments of the amplitudes always cor-
respond to states |p+〉, while negative momentum arguments correspond to
|p−〉 states.

2.2.5 Relation Between Scattering Amplitudes
and Basic Operators

Comparing the asymptotic (large |x|) behavior of the states in (2.39) and
(2.40) with the asymptotic behavior in (2.22), the amplitudes R(p) and T (p)

3 Occasionally one may find a different convention for the “transmission ampli-
tude.” For barriers of width d, some authors write the transmitted wave for
left incidence, up to the normalization factor and disregarding the “l” super-
script, as T exp(ip(x − d)/�) (this is the case in particular of Chap. 12) instead
of T exp(ipx/�) as it is done here. Checking the convention used is of importance
to interpret correctly energy or momentum derivatives of the “phase of T” since
depending on the convention this phase may differ by a factor pd/�. These deriva-
tives enter into the definition of several characteristic times (delay time and phase
time), see Sect. 2.4 below.
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can be related to on-the-energy-shell elements of the transition matrix. We
shall work out one case in detail: the scattering part of 〈x|p+〉 for p > 0 and
x → ∞ is

∫ ∞

−∞
dx′〈x|Ĝ0(Ep + i0)|x′〉〈x′|T̂ (Ep + i0)|p〉

∼ −2πmi

h

eipx/�

p

∫ ∞

−∞
dx′e−ipx

′/�〈x′|T̂ (Ep + i0)|p〉

= −2πmi

p
〈x|p〉〈p|T̂+|p〉 . (2.41)

Adding the free wave, h−1/2eipx/�, and comparing with (2.39), there results
T l(p) = 1 − 2iπm〈p|T̂+|p〉/p for p > 0. The rest of the cases can be worked
out similarly (because of time reversal invariance, 〈p|T̂±|p〉 = 〈−p|T̂±| − p〉,
and T r(p) = T l(p); therefore the superscript for the transmission amplitude
will be dropped hereafter):

T (p) = 1 − 2iπm
p

〈p|T̂sign(p)|p〉 ,

Rl(p) = −2miπ

p
〈−p|T̂sign(p)|p〉 ,

Rr(p) = −2miπ

p
〈p|T̂sign(p)| − p〉 . (2.42)

Some useful relations follow from (2.42),

[T (−p)]∗ = T (p), p real . (2.43)
Rr,l(−p)∗ = Rr,l(p) , p real . (2.44)

From (2.36) and (2.42), the S matrix is given by

S(p) ≡ S(E) =
(

T (p) Rr(p)
Rl(p) T (p)

)
, p > 0. (2.45)

It is quite useful to consider S as a (matrix) function of p. In simple applica-
tions we only use S(p) with p > 0,4 but in fact we may also define S(p) for
p < 0 or even for complex p in terms of the analytical continuations of the
amplitudes T (p), Rr(p), and Rl(p). This extension will be discussed in Sect.
2.2.7.

4 Keep in mind that p > 0 in the arguments of S or of the scattering amplitudes does
not mean “incidence from the left.” According to the sign convention described
in Sect. 2.2.4, it means that the amplitudes correspond to states with outgoing
scattering parts: |p+〉 for left incidence and | − p+〉 for right incidence.
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2.2.6 The Diagonal Sd Matrix

The S matrix (2.45) has been obtained from the momentum representation of
S using plane waves incident from one side, |±p〉, but other on-shell matrices
may be defined in terms of a different basis formed by combinations of | ± p〉.
Of particular interest is the set |uj〉, j = 0, 1, that provides a diagonal matrix,

Sd(p) =
(

S0(p) 0
0 S1(p)

)
. (2.46)

Unitarity implies that |Sj | = 1, so the matrix elements may be written in
terms of real eigenphase shifts δj , Sj = e2iδj . The |uj〉 are not mixed by
the collision; these incident states produce an outgoing combination equal to
the incident one, except for a phase factor. The diagonal Sd matrix is most
advantageous for parity invariant potentials, since the linear combinations
become simply even and odd wave functions,

|u0〉 = 2−1/2(|p〉 + | − p〉) , (2.47)
|u1〉 = 2−1/2(|p〉 − | − p〉) . (2.48)

From the asymptotic behavior of |u+
j 〉 = Ω+|uj〉 and | ± p+〉 we may relate

reflection and transmission amplitudes for even potentials to the eigenphase
shifts,

R(p) = 2−1
(
e2iδ0 − e2iδ1

)
, (2.49)

T (p) = 2−1
(
e2iδ0 + e2iδ1

)
. (2.50)

(Equation (2.50) is in fact valid for arbitrary potentials.) The boundary con-
ditions for the states |u+

j 〉 are

lim
x→−∞〈x|u+

0 〉 = eiδ0
(

2
h

)1/2

cos(−px/� + δ0) ,

lim
x→∞〈x|u+

0 〉 = eiδ0
(

2
h

)1/2

cos(px/� + δ0) ,

lim
x→−∞〈x|u+

1 〉 = ieiδ1
(

2
h

)1/2

sin(px/� − δ1) ,

lim
x→∞〈x|u+

1 〉 = ieiδ1
(

2
h

)1/2

sin(px/� + δ1) . (2.51)

It will be convenient for later manipulations to drop the constant complex
phase factors and define real eigenfunctions of Ĥ as

〈x|ψ0〉 = e−iδ0〈x|u0+〉 ,
〈x|ψ1〉 = −ie−iδ1〈x|u1+〉 . (2.52)
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2.2.7 Complex Momentum

The properties of T (p) as a function of the complex momentum p are of
importance for many applications [8]. Let the potential function V (x) be such
that ∫ ∞

−∞
dx |V (x)|(1 + x2) < ∞ . (2.53)

Then T (p) is meromorphic in Im p > 0 with a finite number nb of simple poles
iβ1, iβ2, ..., , iβn, βj > 0 on the imaginary axis. The numbers −β2

j /(2m) are
the eigenvalues of H . Moreover,

T (p) = 1 + O(1/p) as |p| → ∞ , Im p ≥ 0 , (2.54)

and there can only be a zero at the real axis, at p = 0,

|T (p)| > 0 Im p ≥ 0, p �= 0 . (2.55)

In the generic case T (0) = 0, and

T (p) = γp + o(p), γ �= 0, as p → 0, Im p ≥ 0 . (2.56)

Since T (p) is meromorphic and it does not have zeros in the upper plane, the
integral

1
2πi

∫

A
dp

d lnT (p)
dp

= −nb (2.57)

along the contour A consisting of [−R,−ε], [ε, R], a semicircle of radius ε
around the origin, and a large semicircle of radius R in the upper half plane,
provides, according to a theorem of complex plane integration, the number
of zeros (none in this case) minus the number of poles of T (p) enclosed (the
bound states). The integral may also be evaluated using (2.43), (2.54), and
(2.56); this gives 2iΦT (R) − 2iΦT (ε) − iπ, where ΦT (p) is the phase of T ,

T (p) = |T (p)| exp(iΦT ) . (2.58)

Combining the two results,

ΦT (0) − ΦT (∞) = π(nb − 1/2) , (2.59)

which is Levinson’s theorem for the case T (p = 0) = 0. Otherwise, there
is no −iπ contribution from the small semicircle and the phase difference
becomes just πnb. The convention followed is that ΦT (∞) = 0, so the theorem
establishes the value of ΦT (0).

The possibility to analytically continue T (p) to the lower half plane will
depend on the potential considered [14]. Here we shall assume that the con-
tinuation can be performed (this is the case for example for potentials of finite
range) and discuss the properties that these continuations must obey. From
T †(z) = T (z∗) and the relations (2.42) we find
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(Rr,l(p))∗ = Rr,l(−p∗) , (2.60)
(T (p))∗ = T (−p∗) , (2.61)

so that if there is a pole of T (p) in the fourth quadrant at pR−ipI (pR, pI > 0),
there must also be a pole in the third quadrant at −pR − ipI . For an isolated
pole, and if pI is small, the phase of T (p) along the positive real line will
increase rapidly by π. From (2.50) we see that poles of T (p) are generally
poles of S0 or of S1. Since |T (p)| = | cos(δ0 − δ1)|, if the resonance eigenphase
shift also jumps by π, while the other one remains approximately constant,
the transmission probability along the real axis will pass across a maximum
(1) or a minimum (0) or both, depending on the initial phase difference of
the two eigenphase shifts. The above simplified picture will be blurred if the
resonances are very close to each other, or the pole is far from the real line.

2.2.8 Unitarity and its Consequences

The unitarity of the collision S matrix, SS† = S†S = 1, reflects the conserva-
tion of norm in the collision. It provides two relations:

From the diagonal elements

|T (p)|2 + |Rr,l(p)|2 = 1 , (2.62)

and from nondiagonal ones

T (p)[Rl(p)]∗ + [T (p)]∗Rr(p) = 0 , p real . (2.63)

Equation (2.63) leads to a relation for the phases,

2ΦT − ΦRr − ΦRl = (2n + 1)π, n = 0,±1,±2, ... , (2.64)

where, as in (2.58),
Rr,l(p) = |Rr,l(p)|eiΦ

r,l
R (p) . (2.65)

2.3 A Measure of the Collision Duration:
The Dwell Time

In classical mechanics the quantity

τD(a, b; t1, t2)classical =
∫ t2

t1

dt

∫ b

a

dx �(x, t) , (2.66)

where �(x, t) is the probability density of an ensemble of independent particles,
is the average over the ensemble of the time that each particle trajectory
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spends between a and b within the time window [t1, t2] [15]. In other words,
this is an average “dwell” or “sojourn” time in the selected space–time region.5

Its formal quantum mechanical counterpart is

τD(a, b; t1, t2;ψ) =
∫ t2

t1

dt

∫ b

a

dx |ψ(x, t)|2 . (2.67)

In principle the coordinates a, and b > a, and the instants t1 and t2 > t1 are
arbitrary but most often a and b are chosen so that V (x) is zero or negligible
for x < a and x > b. Hereafter t1 will be, by default, −∞, or occasionally 0,
an initial preparation time, and t2 = ∞.

In spite of the formal similarity of the classical and quantum expressions,
the interpretation of (2.67) as a “mean time” spent in the region [a, b], [t1, t2]
by quantum particles is not straightforward, since in the standard interpre-
tation of the quantum mechanical formalism there are no trajectories and
therefore there is no obvious way to assign a time (duration) of presence to a
given member of the ensemble of particles associated with the quantum state.
There are however several arguments that provide (2.67) by extending to the
quantum case the classical dwell time, e.g. via Feynman path integrals [20],
causal or Bohm trajectories [21], or as an expectation value of a hermitian
sojourn time operator [22], see also Chap. 7 for an interpretation in terms
of weak measurements, and the discussion of Sect. 11.3.1. Irrespective of a
hypothetical statistical interpretation of the dwell time in terms of individual
members of the ensemble, the dwell time is at the very least a characteristic
quantity of the ensemble represented by the state ψ that quantifies the du-
ration of the wave packet collision. In fact, the dwell time is considered an
important parameter in high-speed applications of mesoscopic semiconductor
structures [23].

τD can be written in several ways, in particular as

τD = τD(a, b;−∞,∞) =
∫ ∞

−∞
dt Pab(t) = 〈ψ(t = 0)|T̂D|ψ(t = 0)〉 , (2.68)

where Pab(t) =
∫ b
a
dx �(x, t), T̂D is the sojourn time operator,

T̂D =
∫ ∞

−∞
dt eiĤt/�D̂(a, b)e−iĤt/� , (2.69)

and D̂(a, b) is the projector onto the selected space region,

5 The concept of “dwell time” for a finite space region in the stationary regime is
due to Büttiker [16]. Previously, integrals of the form (2.66) had been used to
define time delays by comparing the free motion to that with a scattering center
and taking the limit of infinite volume, see e.g. [17]. For further review of early
contributions to the “sojourn time” concept, see [18], and for their relation to the
time delay see [19].
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D̂(a, b) =
∫ b

a

dx |x〉〈x| . (2.70)

An experimental determination of the dwell time may be carried out by mon-
itoring the time evolution of the probability inside the selected spatial region
[24]. This is admittedly an indirect route, where the first moment of T̂D, τD,
is obtained without having measured individual dwell times for the members
of the ensemble. It remains to be seen if second and higher moments of T̂D
may be associated with some simple operational procedure.

Let us now find other useful expressions for the dwell time. Integrating the
continuity equation over x between a and b, and over time between −∞ and
t, Pab takes the form

Pab(t) =
∫ t

−∞
dt′ [J(a, t′) − J(b, t′)] =

∫ t

−∞
dt′ ΔJ(a, b, t′) , (2.71)

where J(x, t′) is the current density, ΔJ(a, b) = J(a)−J(b), and the boundary
condition Pab(−∞) = 0 has been assumed. Substituting (2.71) into (2.68), one
finds

τD =
∫ ∞

−∞
dt

∫ t

−∞
dt′ ΔJ(t′) =

∫ ∞

−∞
dt

∫ ∞

−∞
dt′ H(t− t′)f(t′) (2.72)

= lim
t′′→∞

∫ t′′

−∞
dt′ (t′′ − t′)ΔJ(t′) = lim

t′′→∞

[
t′′Pab(t′′) −

∫ t′′

−∞
dt′ t′ ΔJ(t′)

]
.

Unless Pab(t) decays faster than t−1, the dwell time will diverge. The exis-
tence of a potential function leads generically to an asymptotic decay ∼ t−3,
as discussed in Sect. 2.5.3. However, for free motion the dwell time will di-
verge unless the momentum wave function vanishes at p = 0, because of the
dependence ∼ t1/2 of the free-motion propagator, see (2.141) below and the
related discussion. In terms of the sojourn time operator (2.69) for Ĥ0, the
possible divergence is due to a |p|−1 factor,

T̂D,H0 =
∑

α=±

∫ ∞

−∞
dp

mh

|p| |p〉〈p|D̂|αp〉〈αp| . (2.73)

In this and the following sections we shall limit ourselves in general to in-
coming asymptotes in the positive momentum channel (+) that vanish at
p = 0, so that the dwell time for free motion does exist. This will allow us
to compare dwell times with and without potential and to define delay times.
These states, with a bounded support in momentum space, have necessarily
a Fourier transform in coordinate space that can only vanish at some set of
points of measure zero. But this is not a problem since the total probability
for positive positions tends to zero as t → −∞,

lim
t→−∞

∫ ∞

a

dx |〈x|φin(t)〉|2 =
∫ 0

−∞
dp |〈p|φin(0)〉|2 (2.74)

for any a and any φin [25].
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Assuming that tPab(t) → 0 as t → ∞, the dwell time (2.68) takes the local
form

τD(a, b) =
∫ ∞

−∞
dt′ [J(b, t′) − J(a, t′)] t′ . (2.75)

Other expression for states incident in the positive momentum channel may
be obtained by using resolutions of the identity in terms of the states |p+〉,

τD(a, b;ψ) =
∫ ∞

0

dp |〈p|φin(0)〉|2τD(p) , (2.76)

where

τD(a, b; p) ≡
∫ b
a dx |〈x|p+〉|2

p/mh
, (2.77)

which suggests the interpretation of τD(a, b; p) as a dwell time for particles of
definite momentum p [16].

Suppose now that a < 0 and b > 0 are both far from the barrier region,
before and after the barrier, respectively, so that the first passage of the wave
packet across a can be described accurately in terms of the free-motion asymp-
tote φin, while the passage of the transmitted and reflected wave packets can
be evaluated with the asymptotic expressions:

ψT (b, t) =
1√
h

∫ ∞

0

dp 〈p|φin(0)〉T (p) ei(pb−Et)/� , (2.78)

ψR(a, t) =
1√
h

∫ ∞

0

dp 〈p|φin(0)〉R(p) e−i(pa+Et)/� . (2.79)

(For a potential with support between 0 and d, b could be taken at the very
barrier edge, b = d, but a cannot be 0 because of the strong interference
between the incident and reflected parts. |a| should be much greater than the
incident wave packet width in order to distinguish clearly the entrance passage
from the reflected one.) Then,

∫ ∞

−∞
dt′ JT (b, t′) =

∫ ∞

0

dp |T (p)|2|〈p|φin(0)〉|2 = PT ,

∫ ∞

−∞
dt′ JI(a, t′) =

∫ ∞

0

dp |〈p|φin(0)〉|2 = 1 ,

∫ ∞

−∞
dt′ JR(a, t′) = −

∫ ∞

0

dp |R(p)|2|〈p|φin(0)〉|2 = −PR , (2.80)

where the subscripts I, T , and R in JI , JT , and JR mean that φin, ψT , and
ψR have been used to calculate the fluxes. One can then write (2.75) as

τD = PT 〈t〉out
b − 〈t〉ina + PR〈t〉out

a , (2.81)
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where

〈t〉out
b ≡

∫∞
−∞ dt′ JT (b, t′) t′
∫∞
−∞ dt′ JT (b, t′)

, (2.82)

〈t〉ina ≡
∫ ∞

−∞
dt′ JI(a, t′) t′ , (2.83)

〈t〉out
a ≡

−
∫∞
−∞ dt′ JR(a, t′) t′

∫∞
−∞ dt′ |JR(a, t′)|

. (2.84)

In each case the “average passage instant” is obtained by properly nor-
malizing the fluxes. One may rightly wonder whether the notation and termi-
nology used (as average passage times) are justified. The “averages” are taken
over the current density J , a quantity that is not definite positive even for an
incident wave packet without negative momentum components [26, 27, 28]. It
turns out, however, that the above “averages” over J are equal to averages
over a positively defined arrival-time distribution (Kijowski’s arrival-time dis-
tribution) [29], as will be discussed in Chap. 10. Models of detectors based
on complex non-hermitian potentials also lead to these average times, delayed
only by the small (dwell) time that the particle spends in the detector be-
fore being detected [30]. In the next section we shall relate these times to the
“phase times.”

Finally, note that (2.81) could be, and has been, used to partition the dwell
time into transmission and reflection components [15, 31], see also the closely
related approach of Olkhovsky and Recami [32]. The main drawback is that
the defined entrance average instant is common for both contributions, see
[33, 34], which is not correct in the classical ensemble limit, and may lead to
negative transmission times [35] even in the classical case [33]. A two-detector
model avoided this problem by assigning different entrance instants for each
member of the ensemble [34]. The distinction between the dwell time and its
components was first done by Büttiker, [16] and raised some controversy. As
summarized in Chap. 1, Muga, Brouard, and Sala have emphasized the multi-
plicity of possible quantum partitionings versus the uniqueness of the classical
case and developed a systematic theory to generate partitionings with the cor-
rect classical limit. Some of these include interference terms that cannot be
assigned to transmission or reflection but to both of them [15]. For argu-
ments in favor of one particular partitioning based on weak measurements,
see Chap. 11 and [36].

2.4 Importance of the Phases: Time Delays

If the S matrix is known or simply one of the amplitudes Rl or Rr is given
as a function of momentum and there are no bound states, necessary and
sufficient conditions are known for a unique potential to exist, and there are
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well-established construction procedures [37, 8]. However a knowledge of the
probabilities is not enough to determine the amplitudes. The phases are as-
sociated with observable time-dependent properties.

Consider a wave packet impinging from the left on a barrier potential lo-
cated near x = 0. The exact barrier position is not important for our present
purposes: two typical choices for x = 0 are the center of a symmetrical barrier
or the left edge of a finite-range potential. Let us take as before the spatial in-
terval [a, b] well outside the barrier, so that there is a clear separation between
incoming and reflected passages.

Since the incoming state is in the positive momentum channel,

〈x|φin(t)〉 =
∫ ∞

0

dp 〈x|p〉〈p|φin(0)〉e−iEt/� , (2.85)

applying the Möller operator Ω̂+ one obtains

〈x|ψ(t)〉 =
∫ ∞

0

dp 〈x|p+〉〈p|φin(0)〉e−iEt/� . (2.86)

(This relation is exact. If the zero of time is taken well before the wave packet
interacts significantly with the barrier, one could also substitute 〈p|φin(0)〉 →
〈p|ψ(0)〉 without introducing any significant error.)

Substituting (2.85), (2.78), and (2.79) in the time averages (2.82)–(2.84)
and using the standard expression for the current density,

J(x, t) =
�

m
Im
(
ψ(x, t)∗

∂ψ(x, t)
∂x

)
, (2.87)

the derivative of an energy Dirac’s delta may be identified and then used to
perform one of the momentum integrals. The results are

〈t〉outb =
1
PT

∫ ∞

0

dp |〈p|φin(0)〉|2 |T (p)|2 m

p
[b− x0 + �Φ′

T (p)] , (2.88)

〈t〉outa =
1
PR

∫ ∞

0

dp |〈p|φin(0)〉|2 |R(p)|2 m

p
[−a− x0 + �Φ′

R(p)] , (2.89)

〈t〉ina =
∫ ∞

0

dp |〈p|φin(0)〉|2 m

p
[a− x0] , (2.90)

where the prime means derivative with respect to p, and

x0 ≡ � Im (〈φin(0)|p〉′/〈φin(0)|p〉) . (2.91)

These results do not require to assume a narrow packet in momentum repre-
sentation.

The quantity

τPhT (x0, b; p) ≡ m [b− x0 + �Φ′
T (p)] /p (2.92)
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in the integrand of (2.88) consists of the time that a classical free particle
with mass m and momentum p would spend from x0 to b, plus the time delay
m�Φ′

T (p)/p. Similarly, the term in brackets in (2.89),

τPhR (x0, a; p) ≡ m [−a− x0 + �Φ′
R(p)] /p , (2.93)

is the time spent by a classical particle that travels freely from x0 to x = 0,
where its momentum is instantly reversed, and from x = 0 to a, plus a delay
contribution. It is to be noted that unless a = −b the reference time associated
with classical free motion is different in the transmission and reflection cases.
We shall see a consequence of this disparity in Sect. 2.4.2 when calculating
average delays.

Formally we may use (2.92) and (2.93) to define “phase times” for arbitrary
values of a, b, and x0. In particular, for a finite-range barrier between x = 0
and d let us define

τPhT (0, d; p) =
md

p
+

m�

p
Φ′
T (p) (2.94)

by subtracting from τPhT (x0, d; p) the classical flight time between x0 and 0,
−mx0/p. These “extrapolated phase times” for traversal should not be over-
interpreted as actual traversal times [38, 39]. Not only because, as pointed
out in Chap. 1, there is no unique traversal time, but also because a wave
packet peaked around p is very broad in coordinate representation, so it is
severely deformed before the hypothetical “entrance” instant tent = |x0|m/p,
and at x = 0 there is an important interference effect between incident and
reflected components. The wave functions φin and ψR used to calculate the
fluxes JI and JR do not faithfully represent the actual wave, so that the aver-
age instants (2.89) and (2.90) lose their physical meaning as average detection
times.

2.4.1 The Hartman Effect

Relation (2.88) is suitable for examining the “Hartman effect” [40, 41, 38,
32, 31]. Hartman [40] studied the evolution of a wave packet with momentum
distribution centered around pc, colliding with a rectangular barrier of height
V0 > p2

c/(2m) and width d. He found three regions according to the value of d.
For large barrier widths (opaque barrier conditions), the phase time associated
with p, under the barrier, goes to a constant, τPhT (x0, d; p) = 2m/(pκ)−x0m/p,
independent of d, where

κ = [2m(V0 − E)]1/2/� . (2.95)

When transmission is dominated by momentum components below the barrier,
the transmitted wave packet seems to traverse the potential region in a time
interval independent of d. This is the “Hartman effect,” which, as Winful
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has recently pointed out, may be viewed as a result of a saturation of the
integrated probability density and correspondingly of the dwell time, with
increasing barrier width [42, 43]. If d is increased further, plane waves with
momentum above the barrier height dominate the transmission, and classical
behavior results, i.e., time grows linearly with d. Finally, for small barrier
widths, Hartman defined a “thin barrier region” where the phase time depends
generally on d.

To be more specific, let us consider the initial Gaussian wave packet

〈x|φin(0)〉 =
[

1
2πδ2

]1/4
exp

[
ipcx/� − (x − xc)2/(4δ2)

]
, (2.96)

of average momentum pc = �kc and spatial width (square root of the variance)
δ. Here x0 becomes equal the wave packet center xc. The initial momentum
distribution is a Gaussian distribution with variance σ2 = [�/(2δ)]2. We as-
sume that pc >> σ2 so that the truncation at p = 0 in (2.88) is not significant.
For an energy distribution peaked around Ec < V0 the following results can
be drawn [31]:

If κcd ≡
√

2m(V0 − Ec)d/� >> 1, 〈t〉outd does not vary appreciably when
d increases, thus showing the Hartman effect. When d is sufficiently large, the
components of the wave packet under the barrier are so strongly depressed
by |T (p)|2 that higher momenta start to dominate, and 〈t〉outd grows almost
linearly, as one expects classically. As δ is increased, larger values of d are
needed to pass from the first regime to the second one. An estimation of the
value of d, which gives the transition between Hartman effect and quasiclas-
sical behavior, can be obtained for each value of δ by equating the factor
|T (p)|2 |〈|φin(p)〉|2 for p = pc and for p = pr, where pr is the momentum of
the first resonance above the barrier. This leads to the relation

δ =
�
√
− ln |T (pc)|
|pr − pc|

≈ �
√
κcd

|pr − pc|
, (2.97)

between δ and d, which clearly separates quantum and quasiclassical behavior.
Also, for fixed δ, the transition is sharper at larger δ as a consequence of the
narrower momentum distribution.

We have already warned the reader against a naive overinterpretation of
the extrapolated phase time τPhT (0, d; p), which becomes 2m/(pκ) for the bar-
rier traversal in the Hartman effect, mainly because of the strong deformation
of the broad incident wave packet. We could try to avoid the interpretational
pitfalls of this quantity and instead look at the time 〈t〉outd for a wave packet
initially localized near the edge of the barrier, and with a small spatial width
compared to the barrier length d. In this way one may identify the entrance
time and the preparation instant with a tolerable small uncertainty. However,
Low and Mende [44] speculated and then Delgado and Muga [45] have shown
that this localization leads to the dominance of over-the-barrier components.
Similar conclusions are drawn from a two-detector model (one before and one
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after the barrier) when the detector before the barrier localizes the particle
into a small spatial width compared to d [34].

2.4.2 The Lifetime and Delay Time Matrices

The four delay times corresponding to reflection and transmission for right
and left incidence form the delay time matrix introduced by Eisenbud in his
thesis [46],

Δtαβ = Re
[
−i�

1
Sαβ

dSαβ
dE

]
. (2.98)

The matrix element Δtαβ is the delay time in the appearance of the peak
outgoing signal in channel β, after the injection of a pulse narrowly peaked
in momentum in channel α. The “delay” may in fact become negative as dis-
cussed already. These delay times have been traditionally obtained by means
of the “stationary phase approximation.” Let us rewrite the transmitted wave
function as

〈x|ψT (t)〉 = h−1/2

∫ ∞

0

dp eixp/�−iEpt/�+iΦT 〈p|φin(0)〉|T (p)| . (2.99)

If the initial state is narrowly peaked around p0, the integral will be appre-
ciably different from zero only if the phase of the exponential function is
stationary near p = p0. This implies a “spatial delay” with respect to the
free-motion wave packet,

Δx = �
dΦT
dp

∣∣∣∣
p=p0

, (2.100)

and a corresponding “time delay”,

Δt++(p0) =
�m

p0

dΦT
dp

∣∣∣∣
p=p0

. (2.101)

The time delays are also related to the on-the-energy-shell lifetime matrix of
Smith [47],

Q(E) = i�S(E)
dS(E)†

dE
. (2.102)

S is unitary, so Q is Hermitian. Thus the diagonal matrix elements of Q are
real and take the form

Qαα =
∑

β

|Sαβ |2Δtαβ . (2.103)

Since the particle has a probability |Sαβ |2 to emerge in the channel β, Qαα is
the average delay experienced by the particle injected in channel α.
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We shall now relate the Q matrix with the “wave packet lifetime,” defined
as the difference between dwell times with and without potential [47, 48],

〈Q〉 ≡ τD,ψ − τD,φin . (2.104)

As before, the incidence is in the positive momentum channel. τD,ψ is given
by (2.81) whereas the dwell time for free motion is

τD,φin = 〈t〉outb,φin
− 〈t〉ina,φin

=
∫ ∞

0

dp |〈p|φin(0)〉|2 m

p
[b− a] , (2.105)

where, similarly to (2.90),

〈t〉out
b,φin

=
∫ ∞

0

dp |〈p|φin(0)〉|2 m

p
[b− x0] . (2.106)

Since, by hypothesis, 〈t〉ina,ψ = 〈t〉ina,φin
, 〈Q〉 takes the form

〈Q〉 =
∫ ∞

0

dt

∫ b

a

dx
(
|〈x|ψ(t)〉|2 − |〈x|φin(t)〉|2

)

= PT [〈t〉outb,ψ − 〈t〉outb,φin
] + PR[〈t〉outa,ψ − 〈t〉outb,φin

] . (2.107)

Substituting all the integral expressions obtained for the passage times, and
writing c = −a− b,

〈Q〉 = �

∫ ∞

0

dp
m

p
|〈p|φin(0)〉|2

[
Φ′
T |T (p)|2 +

(
Φ′
R +

c

�

)
|R(p)|2

]
. (2.108)

Note the term proportional to c in the reflection part. It arises because of the
mismatch between the free-motion reference times used to define the reflection
and transmission time delays when c �= 0. Choosing c = 0, 〈Q〉 represents the
weighted momentum average of the mean delay for each momentum,6

〈Q〉 =
∫ ∞

0

dp |〈p|φin(0)〉|2Q(E)++ . (2.109)

The eigenvalues of Q have been used as good indicators of resonances [50], see
Sect. 2.4.3 below, and may be interpreted for symmetrical potentials as the de-
lays associated with symmetrical or antisymmetrical bilateral incidence [49].
However, their operational interpretation in terms of individual measurements
is puzzling. An asymptotic measurement of the arrival time at b in the trans-
mission side could be done in principle for one of the identically prepared
systems represented by the wave packet. Because of the coordinate spread
of the wave packet, however, there is a large uncertainty in the time that
6 Additional oscillatory terms, see e.g. [39, 49], appear when the no-interference

condition between the reflected and incident wave packets is not imposed.
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the same particle enters the region [a, b]. If a detector is placed at a before
the collision occurs, the entrance time can be determined, but in general ei-
ther the particle is destroyed or its behavior afterwards is modified by the
measurement. We are thus faced with an intrinsic difficulty to measure indi-
vidual delays. This means that, at variance with other quantum mechanical
averages that are interpreted as averages of the eigenvalues measured for the
individual members of the ensemble, the operational meaning of (2.109) does
not require to assign a lifetime to a given particle. It depends on the average
times defined in (2.82)–(2.84), which are measurable, at least in principle,
by the time-of-flight technique (another operational procedure making use of
particle absorption along the chosen interval has been described by Golub et
al. [51]). This peculiarity of the delay time was already noted by Goldrich and
Wigner [52]. A consequence is that the ordinary quantum fluctuations around
the average value are not operationally meaningful. Instead, the relevant fluc-
tuations refer to variations of the average values themselves, corresponding to
S matrix (or Hamiltonian) ensembles [53].

The trace of (2.102) in the on-shell space is related to the change in density
of states Δρ(E) ≡ Tr[δ(E−H)−δ(E−H0)], which is a fundamental quantity to
characterize the continuous spectrum [54] according to the “spectral theorem”
(the 3D elastic and multichannel versions of the spectral theorem have been
extensively discussed and proven rigorously [55]),

Δρ(E) = −π−1Im Tr[Ĝ(E + i0) − Ĝ0(E + i0)]

=
1
h

∑

α

Q(E)α = π−1 dΦT (E)
dE

. (2.110)

The second equality (spectral theorem) follows from a result of Dashen, Ma,
and Bernstein [56]. To obtain the final expression, (2.62) and (2.64) [57] have
been used; see [58] for an alternative derivation consisting in evaluating Δρ for
a finite system and then going to infinity. Note that the maxima of the trace
of Q may be used to identify resonance energies and widths [59]. For further
relations between the density of states and the dwell time, see [60, 61, 62].
Chapter 9 discusses the concept of local density of states and its relation to
the Larmor clock and transport properties.

2.4.3 Breit–Wigner Resonances

The simplest model of resonance behavior is the Breit–Wigner model for an
isolated resonance,

S(E) = 1 − iA
E − E0 + iΓ/2

. (2.111)

By imposing unitarity to S and assuming that A and the resonance parameters
E0 and Γ are independent of E, it follows that A = A† and

A2 = ΓA . (2.112)
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This means that the matrix A factorizes as Aαβ = γαγ
∗
β and that it is pro-

portional to a projector matrix P = A/Γ with eigenvalues 1 and 0. Thus,
(2.112) takes the form

Γ =
∑

α

|γα|2 . (2.113)

The corresponding Q matrix may now be written as

Q = Pqm , (2.114)

with eigenvalues qm and zero, where

qm =
�Γ

(E − E0)2 + Γ 2/4
(2.115)

is the maximum value allowed for a diagonal element of Q. The Breit–Wigner
model for S and Q can be generalized in various ways, in particular to account
for multiple overlapping resonances [53].

2.4.4 Negative Delays

In partial wave analysis of 3D collisions with spherical potentials, the time de-
lay has been used mainly as a way to characterize resonance scattering. One
of the standard definitions of a resonance is a jump by π in the eigenphases
of the S matrix. In 1D collisions the time delay has also been used frequently
to characterize (non-resonant) tunneling, where it may become negative. In
fact the different delay signs associated with the two types of effects, reso-
nances and tunneling, are not independent. In 3D it was soon understood
by Wigner [63] that the increases and decreases of the phase should balance
each other. Since Levinson’s theorem imposes a fixed phase difference from
p = 0 to ∞, there must be intervals of negative delay to compensate for the
phase increases associated with the resonances. A similar analysis applies in
1D to the transmission amplitude. In Fig. 2.1, the phase of the transmission
amplitude for a square barrier is shown versus p for different values of the
barrier width d. As d increases, the scattering resonances “above the barrier”
p > p0 = (2mV0)1/2 become more dense and are defined better because of the
approach of the resonance poles in the fourth complex momentum quadrant
to the real axis. The corresponding increases of the phase are compensated
by a more and more negative delay in the tunneling region.

Negative delays also arise if a pole of T (p) crosses the real axis upwards,
when varying the interaction strength, to become a loosely bound state in the
positive imaginary axis. Levinson’s theorem, see (2.59), then imposes a sudden
jump in the phase ΦT (0) that must be compensated by a strong negative slope.
This effect is more important near threshold, i.e., when the pole is very close
to the real axis [64]. Similar effects have been described for nonbound state
poles in complex potential scattering [65].
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Fig. 2.1. Phase of the transmission amplitude versus momentum for a square barrier
of “height” V0 = 5 and for three different widths, d = 1 (solid line), 2 (short dashed
line), and 3 (long dashed line). m = 1 (all quantities in atomic units)

Wigner also found a bound for the negative (partial wave) delay time of
a potential of finite radius. Whereas positive delays can be arbitrarily large,
negative delays are restricted by “causality conditions” [66]. Some back-of-
the-envelope causality arguments may, however, be misleading. For example,
assume a barrier of length d, and let a coincide with the left edge and b with
the right edge. If the total time τPhT (0, d) is to be positive, the delay “cannot
be more negative than the reference free time,”

Δt++ > −md

p
, (2.116)

see e.g. [67]. In fact this bound may be violated, in particular at low energy
in the proximity of a loosely bound state. This should not surprise the reader
after our repeated warnings against an overinterpretation of the extrapolated
time τPhT (0, d). The flaw in the argument is the assumption of positivity of
τPhT . Nevertheless, rigorous bounds have been established by Wigner himself
and various authors in 3D collisions, see [68, 66] for review. In 1D collisions,
the following bound holds for even potentials with finite support between −b
and b [64, 69]:

Δt++ ≥ m

p

{
−2b− �

2p
[sin(2pb/� + 2δ0) − sin(2pb/� + 2δ1)]

}

≥ m

p

(
−d− �

p

)
. (2.117)

This may be proven by using the even and odd eigenfunctions 〈x|ψj〉 intro-
duced in (2.52), in particular the fact that

∫ b
−b dxψ2

j > 0. We start by calcu-
lating the logarithmic derivative of 〈x|ψ0〉 at x = b from the known expression
for the outer region, see (2.51),
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Lb ≡
d〈x|ψ0〉/dx

〈x|ψ0〉

∣∣∣∣
x=b

= −p

�
tan(pb/� + δ0) . (2.118)

Taking the derivative of Lb with respect to p,

dδ0

dp
= −

{
�

p

dLb
dp

cos2(pb/� + δ0) +
1
2p

sin[2(pb/� + δ0)] +
b

�

}
. (2.119)

The first term on the right-hand side may also be written as

h�

2m
[〈x|ψ0〉E〈x|ψ0〉x − 〈x|ψ0〉〈x|ψ0〉E,x](x = b) , (2.120)

where the subscripts E and x are shorthand notation for the derivatives with
respect to E and x. Repeating the same operations for x = −b one finds that

[〈x|ψ0〉E〈x|ψ0〉x − 〈x|ψ0〉〈x|ψ0〉E,x](x = b)
= −[〈x|ψ0〉E〈x|ψ0〉x − 〈x|ψ0〉〈x|ψ0〉E,x](x = −b) . (2.121)

We shall now prove that this is a positive quantity. Taking the derivative of
the stationary Schrödinger equation with respect to energy one obtains the
identity for real eigenfunctions of Ĥ [47]

〈x|ψ〉2 = − �
2

2m
∂

∂x
(〈x|ψ〉〈x|ψ〉E,x − 〈x|ψ〉E〈x|ψ〉x) , (2.122)

so that, using (2.121),
∫ b

−b
dx 〈x|ψ0〉2 =

�
2

m
(〈x|ψ0〉E〈x|ψ0〉x − 〈x|ψ0〉〈x|ψ0〉E,x) (x = b) . (2.123)

Carrying out similar manipulations for the odd wave function 〈x|ψ1〉 and using
ΦT = δ0 + δ1 and (2.101), (2.117) is found as a consequence of the positivity
of the probability to find the particle in the barrier region.

According to this bound the negative delay may be arbitrarily large for
small enough momenta and may diverge at p = 0, as it occurs when a bound
state appears when making the potential more attractive [64]. For the square
barrier, which does not have bound states, the time advancement of the
Hartman effect is less important, and it is actually bound by (2.116). Thus,
whereas the experiments looking for anomalously large traversal velocities
(“superluminal effects”) have been frequently based on evanescent conditions
in square barriers (tunneling), square wells with the proper depth may in fact
lead to much larger advancement effects at threshold energies [70].

2.5 Time Dependence of Survival Probability:
Exponential Decay and Deviations

The decay of unstable quantum states is an ubiquitous process in virtually
all fields of physics and energy ranges, from particle and nuclear physics to
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condensed matter, or atomic and molecular science. The exponential decay,
by far the most common type, is surrounded by deviations at short and long
times [71, 72]. In fact other deviations and decay functions are also possible
by a proper choice of initial state [73], but they may require in general rather
artificial and complicated preparations except in some peculiar systems in
which the exponential decay may be totally absent for small ratios between
the resonance energy and its width [74]. We shall, however, concentrate here
on the standard and much more common case of an exponential decay at
intermediate times, surrounded by short-time and long-time deviations. The
short-time deviations have been much discussed, in particular in connection
with the Zeno effect [75, 76, 77] and the anti-Zeno effect [78, 79, 80, 81]. Exper-
imental observations of short- [82, 83] and long-time deviations [84] are very
recent. A difficulty in the experimental verification of long-time deviations
has been the weakness of the decaying signal [85], and also the measurement
itself may suppress the initial state reconstruction [72, 86], which is ultimately
responsible for the deviations. The short- and long-time deviations may in-
deed be distinguished because of the different role played by the initial-state
reconstruction [86]: The long-time decay can be attributed to a wave that
was, in a classical-like, probabilistic sense, fully outside the initial state or
the inner region at intermediate times, i.e., to a completely “regenerated” or
reconstructed state, whereas the decay during the exponential regime is due
to a nonregenerated wave. At short times a small quantum interference be-
tween regenerated and nonregenerated paths is responsible for the deviation
from the exponential decay. We may thus conclude that state reconstruction
is a “consistent history” for long-time deviations but not for short-time ones,
see [86] for a full discussion of these aspects. In this section we shall concen-
trate, instead, on identifying possible dependences on time of the deviations
in simple one-particle 1D systems following [87, 88]. Similar techniques have
been applied to study the decay of a more complicated multiparticle system,
a Tonks–Girardeau gas [89], in [90].

The quantum mechanical decay of unstable states can be described in
different ways [91, 92]. In many theoretical works the emphasis has been on
justifying the approximately valid exponential decay law. A possible treatment
for the survival amplitude A(t, ψ) ≡ 〈ψ(0)|ψ(t)〉 decomposes the state ψ by the
usual resolution into proper and improper eigenstates of the Hamiltonian Ĥ ,
corresponding to bound and continuum states. Even though it contains all the
information, this is not convenient in general either for calculation purposes
or for rationalizing the decay behavior in a simple manner, except in favorable
circumstances where the integral is easily approximated and parameterized,
e.g. for isolated resonances and particular initial states. An ideal description
would handle arbitrarily complex initial states and potentials in simple terms,
and allow for an understanding of both the dominant exponential decay and
the deviations from it. Much progress in this direction has been achieved
by representing A(t, ψ) as a discrete sum over resonant terms [93, 87]. The
discretization allows a clear identification and separation of the physically
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dominant contributions, different terms being important for different time
regimes.

The survival amplitude A(t, ψ) = 〈ψ(0)|ψ(t)〉 requires the diagonal matrix
elements of the unitary evolution operator e−iĤt/�. When this operator is
expressed in terms of the resolvent, A(t, ψ) takes the form

A(t, ψ) = 〈ψ|e−iĤt/�|ψ〉

=
i

2πm

∫

C
dq q〈ψ|e

−izt/�

z − Ĥ
|ψ〉 =

i

2π

∫

C
dq e−izt/�M(q) , (2.124)

where z = q2/2m is a complex energy and the contour C goes from −∞ to
+∞ passing above all the singularities of the resolvent due to the spectrum of
Ĥ (discrete poles for bound states and the natural boundary of the real axis
for the continuum) and

M(q) ≡ q

m
〈ψ| 1

z − Ĥ
|ψ〉 . (2.125)

The survival probability is to be calculated as S(t, ψ) = |A(t, ψ)|2.

2.5.1 Predicted Time Behavior

The function M(q) is evaluated in the upper half q-plane and then analytically
continued into the lower half plane. Provided that the continuation exists,
M(q) has in general a set of core singularities, depending only on the po-
tential, and possibly other structural state-dependent singularities. It is then
useful to deform the original integration contour to the diagonal D of the sec-
ond and fourth quadrants of the q-plane. This provides both physical insight
by identifying the most relevant time dependence (exponential decay) of the
survival and a calculational advantage for the remainder, since for t > 0 the
exponential e−izt/� = e−iq

2t/(2m�) is a real Gaussian on this diagonal.
Let us assume that a pole expansion of the form

M(q) =
∑

k

ak
(q − qk)

(2.126)

is possible (higher-order poles can be treated in a similar fashion). Here k =
1, 2, 3 · · ·, indexes the poles. On deforming the q integration from contour C
to D, the residues of the poles qk crossed in the fourth quadrant on carrying
out this deformation provide contributions to A(t) that decay exponentially
with time, whereas the residues are purely oscillatory for poles in the upper
half plane (bound states),

Ek(t) = ake
−iq2kt/(2m�) = ake

−u2
k , (2.127)
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where
u ≡ q/f, f ≡ (1 − i)

√
(m�/t) (2.128)

becomes real along the diagonal D. Independently of providing or not provid-
ing a residue, all poles contribute because of the integral along the diagonal.
Each pole contribution is expressed in terms of the w function, see [94] or
Appendix, as

Dk(t) = −ak
2

sign(Imuk)w[sign(Imuk)uk] . (2.129)

The exponential term may be added to this contribution to give the compact
result [94],

A(t) =
∑

k

[Ek(t) + Dk(t)] =
∑

k

1
2
akw(−uk) . (2.130)

(It is understood that Ek(t) = 0 for poles in the lower half plane that have
not been crossed when deforming the contour.) The second expression is very
useful for studying the short-time behavior, but the first one has the advantage
of separating explicitly the exponential decay, Ek, from the “correction” Dk,
which is given in terms of the known entire function w parameterized by the
pole position and time. Numerical values and asymptotic properties of this
function for small or large times are easy to calculate.

The above treatment may be extended for an M(q) that includes an entire
function in addition to the pole expansion. This would add to the w functions
the integral along D of the entire function times a real Gaussian.

2.5.2 Short Time Behavior

The short time behavior of the quantum survival probability is easily analyzed
in terms of the above formalism, which allows to classify several possible non
exponential dependences.

Many authors have described a short time t2 dependence of the decay
probability Pdecay ≡ 1 − S, provided the mean energy and the second energy
moment of these states exist, see in particular the work related to the “quan-
tum Zeno paradox” [75, 95]. Less attention has been paid to the short time
behavior if these conditions are not fulfilled. A formal treatment and examples
by Moshinsky and coworkers suggest a t1/2 dependence of the decay probabil-
ity at short times [96, 97]. We shall clarify how these two seemingly different
claims can be compatible and describe other possible dependences.

The Taylor series (2.167) of the w functions in (2.130) gives a series in
powers of t1/2,

A(t) =
∑

k

ak
2

∞∑

n=0

[2−1qk(1 − i)(t/m�)1/2]n

Γ (n2 + 1)
. (2.131)
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This suggests a short time t1/2 dependence of the decay probability, as claimed
by Moshinsky and coworkers [96, 97]. On the other hand, the formal series
based on expanding the evolution operator,

A(t, ψ) = 〈ψ|e−iĤt/�|ψ〉 = 1 − it

�
〈ψ|Ĥ |ψ〉 − t2

2�2
〈ψ|Ĥ2|ψ〉 + · · · , (2.132)

provides a t2 dependence,

Pdecay =
t2

�2

(
〈ψ|Ĥ2|ψ〉 − 〈ψ|Ĥ |ψ〉2

)
+ · · · . (2.133)

However, the expectation values of Ĥ and/or higher powers of Ĥ may not
exist. Several behaviors are possible depending on the existence of these mo-
ments. The question of the physical realizability of Hilbert space states with
infinite first or second energy moments is subject to debate [19]. We shall leave
this debate aside and determine the possible implications on the short-time
behavior.

Consider the first two derivatives of A at time t = 0 first from (2.132) and
then by assuming a general short time dependence of the form A ∼ 1 + b tc,
where b and c are finite constants,

dA

dt

∣∣∣
t=0

=
−i

�
〈ψ|Ĥ |ψ〉 = b c tc−1

∣∣
t=0

, (2.134)

dA2

dt2

∣∣∣
t=0

= − 1
�2

〈ψ|Ĥ2|ψ〉 = b c (c− 1)tc−2
∣∣
t=0

. (2.135)

If the mean energy of the initial state does not exist, a t1/2 dependence of the
decay probability is possible, see examples in [88] and [97].

If the mean energy is finite so that dS/dt|t=0 = 2Re(dA/dt|t=0) = 0, then
c ≥ 1. This rules out a t1/2 dependence of A since a t1/2 dependence implies an
infinite time derivative of A at t = 0. The corresponding coefficient for t1/2 in
(2.131) must vanish by compensation between the different pole contributions.

The second derivative is only finite at time zero if c ≥ 2. This means that
if the first energy moment exists but not the second, a dependence tc where
1 ≤ c < 2 is possible for A (and for the decay probability), in particular t3/2.
(The coefficient for t1/2 must also vanish in this case.) Otherwise, one can
expect that the series (2.132) will be effective at short times for states with
finite moments 〈ψ|Ĥn|ψ〉 leading to a t2 behavior. Examples where t3/2 and
t2 dominate the short-time behavior of Pdecay are provided in [88].

2.5.3 Large-Time Behavior

At first sight the asymptotic expansion of the w function for t ∼ ∞ in the
correction term to the exponential decay suggests a long-time dependence of
the survival probability as t−1, but in fact the general behavior is t−3 because
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of the cancellation of all the t−1 contributions. Due to the exponential e−izt/�

in (2.124), the large t behavior is dominated by the region around the origin.
The origin is actually a saddle point for the steepest descent path for this
exponential factor that crosses the origin along the diagonal D of the second
and fourth quadrants. By introducing u and f variables as in (2.128) the
exponential becomes e−u

2
and u remains real along the steepest descent path.

The resolvent matrix element 〈ψ|(z−Ĥ)−1|ψ〉, which is defined for Imq > 0
(first energy sheet), has to be analytically continued into the lower-half q-plane
(or second sheet of the complex z plane) to allow for this type of analysis,
which will be valid in particular for finite-range potentials. Provided that the
analytically continued function is analytical at the origin it has a Taylor series
expansion

〈ψ|(z − Ĥ)−1|ψ〉 = a0 + a1q + a2q
2 + ... (2.136)

with coefficients ai depending on ψ. But because of the (odd) q factor in
(2.125), the first term, a0, does not contribute to the integral (2.124). The
asymptotic formula for the survival amplitude comes therefore from the second
term and takes the form

〈ψ|e−iĤt/�|ψ〉 ∼ i

2mπ
a1f

3

∫ ∞

−∞
du u2e−u

2
=

1 − i

2m
√
π
a1

(
m�

t

)3/2

. (2.137)

This formal result depends on the validity of (2.136) and on the assumption
that no additional contributions due to the deformation of the contour are
to be considered asymptotically. In general, the analytically continued matrix
elements of the resolvent will have poles in the lower-half q-plane that may be
crossed when deforming the contour, but these can only yield contributions
that decay exponentially with time, so they are negligible at long times.

A similar analysis may be performed for the propagator (no bound
states) [98]

〈x|e−iĤt/�|x′〉 =
i

2π

∫

C
dq I(q)e−izt/� , (2.138)

I(q) =
q

m
〈x| 1

z − Ĥ
|x′〉 , (2.139)

substituting M(q) by I(q). Quite generally, I(q) vanishes at q = 0, and a t3/2

dependence results. An exception is free motion on the full line, where

〈x| 1

z − Ĥ0

|x′〉 =
−im

q�
ei|x−x

′|q/� , (2.140)

so that I(0) = −i/� �= 0. As a consequence, the asymptotic behavior of the
probability density for free motion on the full line is generically t−1. This is
an important case in which (2.136) is not satisfied. Explicitly, by carrying out
the integral in (2.138), the well-known propagator
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Fig. 2.2. d ln |〈x|ψ(t)〉|2/d ln t versus d ln t for two different wave packets: one of

them vanishes at p = 0, 〈p|ψ(0)〉 = C(1 − e−αp
2/�

2
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(solid line), and the other one is a Gaussian wave packet, 〈p|ψ(0)〉 =

C′e−δ
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2−ipx0/� (dashed line). C and C′ are normalization constants; the
parameters are p0 = 1, x0 = −10, α = 0.5, δ = 1, x = 0, and m = 1 (all quantities
in atomic units). Note the asymptotic dependences of the probability densities: t−3

and t−1, respectively

〈x|e−iĤ0t/�|x′〉 =
( m

iht

)1/2

eim(x−x′)2/2�t (2.141)

is obtained. A t−1 behavior will also occur exceptionally when the potential
allows for a zero energy pole of the resolvent.

The free-motion probability density may decay faster than t−1 when the
momentum amplitude 〈p|ψ〉 vanishes at p = 0, so that the q−1 singularity is
canceled, see Fig. 2.2. The exceptional cases of decay slower than t−1 have
been studied by Unnikrishnan [99].

2.6 Other Characteristic Times of Wave Propagation

In the previous section we have seen that contour deformation techniques
in the complex plane allow us to single out contributions to the survival
amplitude from resonance poles. In general, the integral that provides the
time-dependent wave function may involve other critical points, “structural”
poles, saddle points, or branch points, that determine the transient and the
asymptotic behavior of the wave propagation. It is frequently possible to write
explicit expressions or asymptotic expansions for the contributions of these
critical points. In simple cases the effect of (the dominant term of) one of the
critical points provides already a good approximation and a simple picture
emerges, where characteristic times or velocities for the arrival of the main
signal may be identified. Also typical is the transition from the dominance
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of one critical point to another, which may lead to a change in qualitative
behavior and to a characteristic time for the transition. The pioneering work
in this direction is due to Stevens [100, 101], who followed the techniques
that Sommerfeld and Brillouin introduced in their study of the propagation
of light in dispersive media [102]. Examples of the application of a square
barrier and a separable potential to quantum scattering may be found in
[103] and [104]. Here we shall examine, following [105], the somewhat simpli-
fied case corresponding to a point source producing evanescent waves. This
is not a “scattering problem” in the standard sense, but it illustrates quite
clearly methods and concepts involved in more conventional scattering prob-
lems and in other time-dependent quantum phenomena where a stationary
state is reached after a transient behavior, in particular due to a sudden po-
tential switching [106, 107, 108], or a shutter removal as in “diffraction in time
phenomena” after Moshinsky’s pioneering work [96], see [109, 110] and refer-
ences therein. Similar techniques to the ones exemplified below have been used
to determine characteristic times of matter-wave pulses [109, 110], permanent
particle trapping, resonance build-up [106, 107], also including interparticle
interactions [111], and of expansions of a Tonks–Girardeau gas [112]. Indeed,
the attainment of ultracold temperatures by laser cooling makes the discussion
of quantum effects for the atomic translational motion relevant and timely.

In order to summarize essential aspects of the time dependence of wave
phenomena a number of characteristic velocities or times have been tradition-
ally defined. (We will see that some of them coincide with times associated
with critical points.) The phase velocity, ω/k, is the velocity of constant phase
points in the stationary wave (assume k > 0 for the time being)

eikx−iωt . (2.142)

The boundary conditions, the superposition principle, and the dispersion re-
lation ω = ω(k) between the frequency ω and the wave number k determine
the time evolution of the waves in a given medium. If a “group” is formed by
superposition of stationary waves around a particular ω, it propagates with
the group velocity dω/dk. In dispersive media (where the group velocity de-
pends on ω), the group velocity can be smaller (normal dispersion) or greater
(anomalous dispersion) than the phase velocity. It was soon understood that
both these velocities could be greater than c for the propagation of light; Som-
merfeld and Brillouin [102], studying the fields that result from an input-step
function-modulated signal in a single Lorentz resonance medium, introduced
other useful velocities, such as the velocity of the very first wave front (equal
to c) or the signal velocity for the propagation of the main front of the wave.

The above description is, however, problematic for evanescent waves, char-
acterized by imaginary wave numbers instead of the real wave numbers of
propagating waves. The role played by the imaginary part of the group veloc-
ity dω/dk and the possible definition of a signal velocity in the evanescent case
have been much discussed. Assume that a source is placed at x = 0 and emits
with frequency ω0 from t = 0 on. If ω0 is above the cutoff frequency of the
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medium (the one that makes k = 0) a somewhat distorted but recognizable
front propagates with the velocity corresponding to ω0. For the dimensionless
Schrödinger equation,

i
∂ψ

∂t
= −∂2ψ

∂x2
+ ψ , (2.143)

the dispersion relation takes the form

ω = 1 + k2 , (2.144)

and the signal propagation velocity for the main front is equal to the group
velocity, vp = (dω/dk)ω0 = 2(ω0 − 1)1/2. In other words, at some distance x
from the source, the amplitude behaves, in first approximation, as

ψ(x, t) ≈ e−iω0te+ik0xΘ(t− x/vp) , (2.145)

where k0 = (ω0 − 1)1/2 is the wave number related to ω0 by the dispersion
relation and Θ is the Heaviside (step) function. In the evanescent case, ω0 <
1, a preliminary analysis by Stevens [100, 101, 113], following the contour
deformation techniques used by Brillouin and Sommerfeld, suggested that a
main front, moving now with velocity vm = 2(1−ω0)1/2 = Im(dω/dk)ω0 , and
attenuated exponentially by exp(κ0x), where

κ0 = (1 − ω0)1/2 , (2.146)

could be also identified,

ψ(x, t) ≈ e−iω0te−κ0xΘ(t− x/vm) . (2.147)

The contour for the integral defining the field evolution was deformed along
the steepest descent path from the saddle point, and the main front (2.147)
was associated with a residue due to the crossing of a pole at iκ0 by the
steepest descent path.

The result seemed to be supported by a different approximate analysis of
Moretti based on the exact solution [113] and by the fact that the time of
arrival of the evanescent front, τ = x/vm, had been found independently by
Büttiker and Landauer [114, 16] as a characteristic traversal time for tunneling
using rather different criteria (semiclassical arguments, the rotation of the
electron spin in a weak magnetic field, and the transition from adiabatic to
sudden regimes in an oscillating potential barrier).

However, more accurate studies of the point source problem and other
boundary conditions have shown that the contribution from the saddle point
(due to frequency components above or at the frequency cutoff created by the
sharp onset of the source emission) and possibly from other critical points
(e.g., resonance poles when a square barrier is located in front of the source
[103]) are generally dominant at τ , so that no sign of the ω0 front is seen in
the total wave density at that instant, see [115, 116, 117, 118, 103, 105] and
Sect. 2.6.1.
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Büttiker and Thomas reconsidered the signal sent out by a source that
has a sharp onset in time [119]. They proposed two approaches to enhance
the monochromatic fronts compared to the forerunners due to the saddle.
First, the dominance of the high-frequency forerunners could be avoided if the
source is frequency limited such that all frequencies of the source are within
the evanescent case. Of course this makes the onset of the signal unsharp. A
second option is not to limit the source but to frequency limit the detection.
We can chose a detector that is tuned to the frequency of the source and that
responds when the monochromatic front arrives.

These two proposals and the sharp onset case were later implemented and
examined in detail by Muga and Büttiker [105]. For a source with a sharp
onset, they found that the traversal time τ plays a basic and unexpected
role in the transient regime. For strongly attenuating conditions in the WKB
(Wentzel-Kramers-Brillouin) limit, the traversal time governs the appearance
of the first main peak of the forerunner. In contrast, the transition from the
forerunner to an asymptotic regime that is dominated by the monochromatic
signal of the source is given by an exponentially long time, see more details in
Sect. 2.6.1 below. If the source is frequency band limited such that it switches
on gradually but still fast compared to the traversal time, the situation re-
mains much the same as for the sharp source, except that now the transition
from the transient regime to the stationary regime occurs much faster, but
still on an exponentially long timescale. This changes if we permit the source
to be switched on a timescale comparable to or larger than the traversal time
for tunneling. Clearly, in this case a precise definition of the traversal time is
not possible. But for such a source the transition from the transient regime
to the asymptotic regime is now determined by the traversal time. Much the
same picture emerges if we limit the detector instead of the source. Muga
and Büttiker model the detector response by means of a “spectrogram,” a
time–frequency representation of the wave function at a fixed point. As long
as the frequency window of the detector is made sharp enough to determine
the traversal time with accuracy, the detector response is dominated by the
uppermost frequencies. In contrast, if the frequency window of the detector
is made so narrow that the possible uncertainty in the determination of the
traversal time is on the order of the traversal time itself, the detector sees a
crossover from the transient regime to the monochromatic asymptotic regime
at a time determined by the traversal time.

Possibly, the fact that we cannot determine the traversal time with an
accuracy better than the traversal time itself tells us something fundamental
about the tunneling time problem and is not a property of the two particular
methods investigated.

2.6.1 Role of the Traversal Time for a Source with a Sharp Onset

We shall obtain exact and approximate expressions of the time-dependent
wave function for x > 0 and t > 0 corresponding to the Schrödinger equation
(2.143) and the “source boundary condition”
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ψ(x = 0, t) = e−iω0tΘ(t) , (2.148)

in the evanescent case ω0 < 1. (A discussion of the physical meaning of “source
boundary conditions” as compared to standard “initial value” conditions may
be found in [120].) The solution may be constructed from its Fourier transform
as

ψ(x, t) = −e−it

2πi

∫

Γ+

dk

[
1

k + iκ0
+

1
k − iκ0

]
eikx−ik

2t , (2.149)

where the contour Γ+ goes from −∞ to ∞ passing above the pole at iκ0,
and κ0 is given by (2.146). The contour can be deformed along the steepest
descent path from the saddle at ks = x/2t, the straight line

kI = −kR + x/2t , (2.150)

(kR and kI are the real and imaginary parts of k.) plus a small circle around
the pole at iκ0 after it has been crossed by the steepest descent path, for fixed
x, at the critical time

τ =
x

2κ0
. (2.151)

This procedure allows to recognize two w functions [94] one for each integral,

ψ(x, t) =
1
2
e−it+ik

2
st [w(−u′

0) + w(−u′′
0)] . (2.152)

Here,

u′
0 =

1 + i

21/2
t1/2κ0

(
−i− τ

t

)
, (2.153)

u′′
0 =

1 + i

21/2
t1/2κ0

(
i− τ

t

)
.

It is clear from the exact result, (2.152) and (2.153), that τ is an important
parameter that appears naturally in the w-function arguments, and deter-
mines with κ0 the global properties of the solution. Its detailed role will be
discussed next.

The simplest approximation for ψ(x, t) for times before τ is to retain the
dominant contribution of the saddle by putting k = ks in the denominators
of (2.149) and integrating along the steepest descent path,

ψs(x, t) =
e−it+ik

2
st

2iπ1/2

(
1
u′

0

+
1
u′′

0

)
. (2.154)

The average local instantaneous frequency for this saddle contribution is equal
to the frequency of the saddle point [105],

ωs ≡ 1 + x2/4t2 . (2.155)
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After the crossing of the pole iκ0 by the steepest descent path at t = τ the
residue

ψ0(x, t) = e−iω0te−κ0xΘ(t − τ) (2.156)

has to be added to (2.154),

ψ(x, t) ≈ ψs(x, t) + ψ0(x, t) . (2.157)

The solution given by (2.156) describes a monochromatic front that carries
the signal into the evanescent medium. The conditions of validity of this ap-
proximation can be determined by examining the asymptotic series of the
w(z) functions in (2.152) for large |z|, see Appendix. In fact (2.157) is ob-
tained from the dominant terms of these expansions. Large values of |z| are
obtained with large values of κ0, t, or x, and also when t → 0. Within the
conditions that make the saddle approximation valid, the contribution of the
pole is negligible. To see this more precisely let us examine the ratio between
the moduli of the two contributions,

R(t) ≡ |ψ0|
|ψs|

=
2π1/2

x
e−κ0xt3/2(x2/4t2 + κ2

0) . (2.158)

Its value at τ is an exponentially small quantity,

R(t = τ) = e−κ0x(2πκ0x)1/2 . (2.159)

In summary, for the source with a sharp onset described here, the monochro-
matic front is not visible when the approximation (2.157) remains valid around
t = τ . A complementary analysis is carried out in Chap. 12.

However, two very important observable features of the wave can be ex-
tracted easily from (2.157). The first one is the arrival of the transient front,
characterized by its maximum density at tf ≡ τ/31/2. (The peak time is ex-
actly τ if it is evaluated with respect to x for t fixed [121].) This time is,
surprisingly, on the order of τ , but the wave front that arrives does not oscil-
late with the pole frequency ω0, but with the saddle point frequency ωs, i.e.,
it does not tunnel.

The second observable feature that we can extract from (2.157) is the
timescale for the attainment of the stationary regime, or equivalently, the
duration ttr of the transient regime dominated by the saddle before the pole
dominates. ttr can be identified formally as the time where the saddle and pole
contributions are equal, R = 1. Because of (2.159) we shall assume τ << ttr
to obtain the explicit result

ttr ≈
(

xeκ0x

2κ2
0π

1/2

)2/3

. (2.160)

Finally, when xκ0 is small (<∼ 1), the saddle approximation describes correctly
the very short-time initial growth, but fails around τ because the pole is within
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the width of the Gaussian centered at the saddle point. The pole cancels part
of the Gaussian contribution so that the bump predicted by ψs at τ/31/2

is not seen in this regime. In fact, the forerunner is dominated in this case
by under-the-barrier components [122], and its characteristic arrival time is
inversely proportional to the difference between the potential energy and the
incidence energy, a tunneling timescale different from both the phase time and
the Büttiker–Landauer time [123, 122]. A generalization of the results of this
subsection for relativistic equations may be found in [124].

2.6.2 Ultrafast propagation in absorbing media

If a small imaginary potential is added to the setup described in Sect. 2.6.1,
an interesting effect occurs [125, 126]: the temporal peak arrives at different
locations simultaneously. The arrival time corresponds to the lifetime of the
particle in the medium from the instant when the point source with a sharp
onset is turned on. The simultaneous arrival due to absorption, unlike the
Hartman effect, occurs for carrier frequencies under or above the cutoff, and
for arbitrarily large distances. It also holds in a relativistic generalization but
limited by causality. A possible physical realization has been proposed by illu-
minating a two-level atom with a detuned laser [125]. The effect is also found
within a broad spatial range in an absorbing waveguide when the source emits
(more realistic) smoothed pulses instead of a perfectly sharp step signal. The
optimal carrier frequency is barely below the cutoff but, at variance with other
“ultrafast” wave phenomena based on anomalous dispersion in absorbing me-
dia [127, 128, 129, 130], which depend on the dominance of the carrier (central)
frequency associated with faster than light, infinite, or negative group veloc-
ities, the ubiquitous peak is, at each position, dominated by the saddle point
contributions above the cutoff frequency. It is thus a fundamentally different
phenomenon. In the case described by the Schrödinger equation [125] it is
closer in nature to the over-the-barrier, saddle-dominated peak that arrives
at the Büttiker–Landauer time in a nonabsorbing medium [105, 121], and in
fact it tends to it continuously when the absorption vanishes. However, that
peak “moves” with a semiclassical tunneling velocity whereas in the absorbing
medium it appears everywhere simultaneously within the domain of the effect.

The task of sending information to arrive at different receivers simulta-
neously is different from the question of superluminal velocities because the
information always arrives subluminally [131, 132], and it will be possible in
principle to send information faster to a single fixed receiver than with the
present effect.
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Appendix: Properties of w Functions

The w function is an entire function defined in terms of the complementary
error function as [94]

w(z) = e−z
2
erfc(−iz) . (2.161)

w(z) is frequently recognized by its integral expression

w(z) =
1
iπ

∫

Γ−

e−u
2

u− z
du , (2.162)

where Γ− goes from −∞ to ∞ passing below the pole at z. For Imz > 0 this
corresponds to an integral along the real axis. For Imz < 0 the contribution
of the residue has to be added, and for Imz = 0 the integral becomes the
principal part contribution along the real axis plus half the residue. From
(2.162) two important properties are deduced:

w(−z) = 2e−z
2 − w(z) (2.163)

and
w(z∗) = [w(−z)]∗ . (2.164)

To obtain an asymptotic series as z → ∞ for Imz > 0 one may expand
(u − z)−1 around the origin (the radius of convergence is the distance from
the origin to the pole, |z|) and integrate term by term. This provides

w(z) ∼ i√
π z

[
1 +

∞∑

m=1

1 · 3 · ... · (2m− 1)
(2z2)m

]
Imz > 0 , (2.165)

which is a uniform expansion in the sector Imz > 0. For the sector Imz < 0,
(2.163) gives

w(z) ∼ i√
π z

[
1 +

∞∑

m=1

1 · 3 · ... · (2m− 1)
(2z2)m

]
+ 2e−z

2
, Imz < 0 . (2.166)

If z is in one of the bisectors then −z2 is purely imaginary and the exponential
becomes dominant. But right at the crossing of the real axis, Imz = 0, the
exponential term is of order o(z−n), (all n), so that (2.165) and (2.166) are
asymptotically equivalent as |z| → ∞.



2 Characteristic Times 69

w(z) has the series expansion

w(z) =
∞∑

0

(iz)n

Γ (n2 + 1)
. (2.167)

The w function is a particular case of the Moshinsky function [96], which can
be regarded as “the basic propagator for a Schrödinger transient mode” [133].
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013705 (2005) 62
108. A. Ruschhaupt, F. Delgado, J. G. Muga: J. Phys. B 38, 2665 (2005) 62
109. A. Del Campo, J.G. Muga: J. Phys. A 38, 9803 (2005) 62
110. A. del Campo, J.G. Muga: J. Phys. A 39, 5897 (2006) 62
111. F. Delgado, J.G. Muga, H. Cruz, D. Luis, D.G. Austing: Phys. Rev. B 72,

195318 (2005) 62
112. A. del Campo, J.G. Muga: Europhys. Lett. 74, 965 (2006) 62
113. P. Moretti: Phys. Scr. 45, 18 (1992) 63
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The Time–Energy Uncertainty Relation

Paul Busch

Department of Mathematics, University of York, York, UK

3.1 Introduction

The time–energy uncertainty relation

ΔT ΔE ≥ 1
2

� (3.1)

has been a controversial issue since the advent of quantum theory, with re-
spect to appropriate formalisation, validity, and possible meanings. Already
the first formulations due to Bohr, Heisenberg, Pauli, and Schrödinger are
very different, as are the interpretations of the terms used. A comprehensive
account of the development of this subject up to the 1980s is provided by a
combination of the reviews of Jammer [1], Bauer and Mello [2], and Busch
[3, 4]. More recent reviews are concerned with different specific aspects of the
subject: [5, 6, 7]. The purpose of this chapter is to show that different types of
time–energy uncertainty relation can indeed be deduced in specific contexts,
but that there is no unique universal relation that could stand on equal foot-
ing with the position–momentum uncertainty relation. To this end, we will
survey the various formulations of a time–energy uncertainty relation, with
a brief assessment of their validity, and along the way we will indicate some
new developments that emerged since the 1990s (Sects. 3.3, 3.4, and 3.6). In
view of the existing reviews, references to older work will be restricted to a
few key sources. A distinction of three aspects of time in quantum theory
introduced in [3] will serve as a guide for a systematic classification of the
different approaches (Sect. 3.2).

3.2 The Three-fold Role of Time in Quantum Theory

The conundrum of the time–energy uncertainty relation is related to an ambi-
guity concerning the role of time in quantum theory. In the first place, time is
identified as the parameter entering the Schrödinger equation and measured
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by an external, detached laboratory clock. This aspect will be referred to
as pragmatic, laboratory, or external time. By contrast, time as dynamical or
intrinsic time is defined through the dynamical behaviour of the quantum ob-
jects themselves. Finally, time can also be considered as an observable – here
called observable time or event time. These three aspects of time in quantum
theory will be explained in some more detail.

3.2.1 External Time

The description of every experiment is based on a spatio-temporal coordinati-
sation of the relevant pieces of equipment. For example, one will specify the
relative distances and orientations of particle sources and detectors, as well as
control the times at which external fields are switched on and off, or record the
times at which a detector fires. Such external time measurements are carried
out with clocks that are not dynamically connected with the objects stud-
ied in the experiment. The resulting data are used to specify parameters in
the theoretical model describing the physical system, such as the instant or
the duration of its preparation, or the time period between the preparation
and the instant at which a measurement of, say, position is performed, or the
duration of a certain measurement coupling applied.

External time is sharply defined at all scales relevant to a given experiment.
Hence there is no scope for an uncertainty interpretation with respect to
external time. However, it has been argued that the duration of an energy
measurement limits the accuracy of its outcomes. According to an alternative
proposal, the energy of an object is uncertain, or indeterminate, during a
period of preparation or measurement, since this involves interactions. These
two types of conjectured relations will be scrutinised in Sects. 3.3.1 and 3.3.2.

3.2.2 Intrinsic Time

As a physical magnitude, time is defined and measured in terms of physical
systems undergoing changes, such as the straight line motion of a free particle,
the periodic circular motion of a clock dial, or the oscillations of atoms in an
atomic clock. In accordance with this observation, it can be said that every
dynamical variable of a physical system marks the passage of time, as well
as give an (at least approximate) quantitative measure of the length of the
time interval between two events. Hence every non-stationary observable A of
a quantum system constitutes its own characteristic time τϕ (A) within which
its mean value changes significantly (ϕ being any initial state). For example,
if A = Q, the position of a particle, then τϕ (Q) could be defined as the time it
takes for the bulk of the wave packet associated with a state vector ϕ to shift
by a distance equal to the width of the packet. Or for a projection P , τϕ (P )
could be the length of the greatest time interval for which the probability
〈ϕt|Pϕt〉 ≥ 1−ε. Here ϕt = e−itH/�ϕ is the state at time t in the Schrödinger
picture. Further concrete examples of characteristic times are the time delay
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in scattering theory, the dwell time in tunnelling, or the lifetime of an unstable
state (cf. Chap. 2).

Considering of time as an entity intrinsic to the dynamical behaviour of a
physical system entails a variety of time–energy uncertainty relations in which
ΔT is given by a characteristic time τϕ (A) associated with some dynamical
variable A. On the other hand, the study of dynamics often involves exper-
imental questions about the time of an event, the time difference between
events, or the duration of a process associated with the object system. This
raises the quest for the treatment of time as an observable.

3.2.3 Observable Time

A standard experimental question in the study of decaying systems is about
the temporal distribution of the decay events over an ensemble. More precisely,
rather than the instant of decay one will be measuring the time of arrival
of the decay products in a detector. A related question is that about the
time of flight of a particle. Attempts to represent these time observables in
terms of appropriate operators have been hampered by Pauli’s theorem [8]
(cf. Chap. 1), according to which the semi-boundedness of any Hamiltonian
H precludes the existence of a self-adjoint operator T acting as a generator
of a unitary group representation of translations in the energy spectrum. In
fact, the covariance relation

eihT/�He−ihT/� = H + hI , (3.2)

valid for all h ∈ R, immediately entails that the spectrum of H should be
R. If the covariance was satisfied, it would entail the Heisenberg canonical
commutation relation, valid in a dense domain,

[H,T ] = iI , (3.3)

so that a shift generator T would be canonically conjugate to the energy, with
ensuing observable time–energy uncertainty relation for any state ρ,

ΔρT ΔρH ≥ �

2
. (3.4)

In his classic paper on the uncertainty relation, Heisenberg [9] posited a time
operator T conjugate to the Hamiltonian H and gave the canonical commu-
tation relation and uncertainty relation, without any comment on the formal
or conceptual problematics.

It should be noted, however, that the Heisenberg relation is weaker than
the covariance relation; hence it is possible that the former can be satisfied
even when the latter cannot. We shall refer to operators conjugate to a given
Hamiltonian as canonical time operators. For example, for the harmonic os-
cillator Hamiltonian there do exist self-adjoint canonical time operators T .
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In other cases, such as the free particle, symmetric operators have been con-
structed, which are conjugate to the Hamiltonian, but which are not self-
adjoint and do not admit self-adjoint extensions.

No general method seems to exist by which one could decide which Hamil-
tonians do admit canonical, self-adjoint time operators. Moreover, even in
cases where such time operators do not exist, there may still be relevant ex-
perimental questions about the time of the occurrence of an event. It is there-
fore appropriate to consider the approach to defining observables in terms of
the totality of statistics, i.e., in terms of positive operator-valued measures
(POVMs). All standard observables represented as self-adjoint operators are
subsumed under this general concept as special cases by virtue of their asso-
ciated projection-valued spectral measures. The theory of POVMs as repre-
sentatives of quantum observables and the ensuing measurement theory are
developed in [10], including a comprehensive review of relevant literature. In
Sect. 3.6 we will consider examples of POVMs describing time observables
and elucidate the scope of an uncertainty relation for observable time and
Hamiltonian.

In Sect. 3 we will also address the important question of interpretation
of time uncertainties. The uncertainty of the decay time has always been
quoted as the prime example of the fundamental indeterminacy of the time of
occurrence of a quantum event. Yet the question remains as to whether such
an indeterminacy interpretation is inevitable or whether the time uncertainty
is just a matter of subjective ignorance.

3.3 Relation Between External Time and Energy Spread

One of the earliest proposed versions of the time–energy uncertainty relation
ΔT ΔE � h identifies the quantity ΔT not as an uncertainty but as the du-
ration of the measurement of energy. The quantity ΔE has been interpreted
in two ways: either as the range within which an uncontrollable change of the
energy of the object must occur due to the measurement (starting with a state
in which the energy was more or less well defined) or as the resolution of the
measurement of energy. On the latter interpretation, if the energy measure-
ment is repeatable, the energy measurement resolution ΔE is also reflected
in the uncertainty of the energy in the outgoing state ϕ of the object system,
i.e., it is approximately equal to the root of the variance of the Hamiltonian,
ΔH =

(
〈ϕ|H2ϕ〉 − 〈ϕ|Hϕ〉2

)1/2
.

The original arguments were rather informal, and this has given rise to
long controversies, leading eventually to precise quantum mechanical models
on which a decision could be based. Prominent players in this debate were
Bohr, Heisenberg, and Pauli versus Einstein, with their qualitative discussions
of Gedanken experiments; Landau and Peierls, Fock and Krylov, Aharonov
and Bohm, Kraus, Vorontsov, and Stenholm (for a detailed account, cf. [4]).
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The conclusion maintained here is that an uncertainty relation between
external time duration and energy spread is not universally valid. It may hold
for certain types of Hamiltonians, but it turns out wrong in some cases. A
counter example was first provided by an energy measurement model due to
Aharonov and Bohm [11]. The debate about the validity of this argument
suffered from a lack of precise definitions of measurement resolution and re-
producibility of outcomes. This difficulty can be overcome by recasting the
model in the language of modern measurement theory using positive operator
valued-measures. This analysis [4] will be reviewed and elaborated next.

3.3.1 Aharonov–Bohm Energy Measurement Model

We consider a system of two particles in one dimension, one particle being
the object and the other serving as a probe for a measurement of momentum.
The total Hamiltonian is given by

H =
P 2
x

2m
+

P 2
y

2M
+ Y Pxg (t) ,

where (X,Px) and the (Y, Py) are the position and the momentum observ-
ables of the object and probe, respectively, and m,M are their masses. The
interaction term produces a coupling between the object momentum Px to be
measured and the momentum Py of the probe as the read-out observable. The
function g (t) serves to specify the duration and the strength of the interaction
as follows:

g (t) =
{

g0 if 0 ≤ t ≤ Δt ,
0 otherwise .

The Heisenberg equations for the positions and momenta read

Ẋ = 1
mPx + Y g (t) , Ṗx = 0,

Ẏ = 1
M Py , Ṗy = −Pxg (t) .

This is solved as follows:

Px = P 0
x , Py = P 0

y − P 0
x g0 Δt , for t ≥ Δt .

The kinetic energy of the object before and after the interaction is given by
one and the same operator:

H0 =
m

2
Ẋ2 =

P 2
x

2m
.

Thus, the value of kinetic energy H0 can be obtained by determining the mo-
mentum Px in this measurement. During the interaction period the kinetic
energy m

2 Ẋ2 varies but the first moments before and after the measurement
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are the same. This is an indication of a reproducible energy measurement. Fol-
lowing Aharonov and Bohm, one could argue that achieving a given resolution
Δpx requires the change of deflection of the probe Δ

(
Py − P 0

y

)
due to a shift

of the value of Px of magnitude Δpx to be greater than the initial uncertainty
of the probe momentum, ΔP 0

y . This yields the following threshold condition:

Δpx g0 Δt ∼= ΔP 0
y .

By making g0 large enough, “both Δt and Δpx can be made arbitrarily small
for a given ΔP 0

y ” [11].
This is the core of Aharonov and Bohm’s refutation of the external time–

energy uncertainty relation: the energy measurement can be made in an arbi-
trarily short time and yet be reproducible and arbitrarily accurate.

It is instructive to reformulate the whole argument within the Schrödinger
picture, as this will allow us to find the POVMs for momentum and kinetic
energy associated with the relevant measurement statistics. The property of
reproducibility presupposes a notion of initially relatively sharp values of the
measured observable. We take the defining condition for this to be the fol-
lowing: the uncertainty of the final probe momentum is approximately equal
to the initial uncertainty. Let Φ = ϕ⊗ φ be the total Heisenberg state of the
object (ϕ) plus probe (φ). The final probe momentum variance is found to be

(ΔΦPy)
2 =

(
ΔφP

0
y

)2
+ g2

0 Δt2 (ΔϕPx)
2

.

Sharpness of the object momentum corresponds to the last term being
negligible.

First we calculate the probability of obtaining a value Py in an interval S.
The corresponding spectral projection will be denoted EPy (S). The follow-
ing condition determines the POVM of the measured unsharp momentum
observable of the object:

〈ΦΔt|I ⊗ EPy (S)ΦΔt〉 = 〈ϕ|A (S)ϕ〉 for all ϕ ,

where ΦΔt = exp (−iΔtH/�) ϕ ⊗ φ is the total state immediately after the
interaction period, i.e.,

ΦΔt (px, py) = e−ip
2
xΔt/2m�−iγ(px,py,Δt)/� ϕ (px) φ (py + pxg0Δt) ,

γ (px, py, Δt) =
1

6M
p2
x g0 Δt3 +

1
2M

px py g0 Δt2 +
1

2M
p2
yΔt .

One obtains:

A (S) = EPx
f

(
− S

g0Δt

)
,

which is an unsharp momentum observable (∗ denoting convolution),
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EPx
f (R) = χR ∗ f (Px) =

∫

R

dp f (p) EPx (R + p) , (3.5)

f (p) = g0 Δt |φ (p g0 Δt)|2 . (3.6)

Due to the properties of the convolution it is straightforward to verify that
these positive operators form a POVM, i.e., (countable) additivity over dis-
joint sets and normalisation EPx

f (R) = I are satisfied. It is thus seen that
the resolution of the measurement, described by the confidence distribution
f , is determined by the initial probe state as well as the interaction param-
eter g0Δt. In fact, a measure of the inaccuracy is given by the width of the
distribution f , which can be characterised (for suitable probe states φ) by the
variance:

(Δpx)2 = Varf (p) =
(

1
g0Δt

)2

Varφ (Py) . (3.7)

It is clear that increasing the parameter g0Δt leads to a more and more
sharply peaked function f . This is to say that the inaccuracy of the momentum
measurement, given by the width Δf of f , can be arbitrarily increased for
any fixed value of the duration Δt. The same will be seen to be true for the
inaccuracy of the measured values of energy inferred from this momentum
measurement. This disproves the inaccuracy version of the external time–
energy uncertainty relation where ΔE is taken to be the energy measurement
inaccuracy.

In order to assess the reproducibility properties of the measurement, we
need to investigate the state change of the object due to the measurement.
The final object state ρR conditional upon an outcome px in R is determined
via the following relation: for all states ϕ and all object operators a,

tr [a ρR] = 〈ΦΔt|a⊗ EPy (−Rg0Δt)ΦΔt〉 .

One obtains:
ρR =

∫

R

dp′xAp′x |ϕ〉〈ϕ|A
∗
p′x

where the operators Ap′x act as

(
Ap′xϕ

)
(px) = (g0Δt)1/2 e−ip

2
xΔt/2m� e−iγ(px,−p′xg0Δt,Δt)/� ×

×φ ((px − p′x) g0Δt) ϕ (px) .

The momentum distribution is (up to normalisation):

〈px|ρR|px〉 =
∫

R

dp′x
∣∣(Ap′xϕ

)
(px)

∣∣2 = χX ∗ f (px) |ϕ (px)|2 .

If |ϕ (px)|2 is sharply peaked at p0
x, in the sense that

|φ ((px − p′x) g0Δt)|2 |ϕ (px)|2 ∼=
∣∣φ
((

p0
x − p′x

)
g0Δt

)∣∣2 |ϕ (px)|2 ,
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then one has
〈px|ρR|px〉 ∼= χR ∗ f

(
p0
x

)
|ϕ (px)|2 . (3.8)

Hence if ϕ is such a near-eigenstate of Px, then the conditional final state has
practically the same sharply peaked momentum distribution. In other words,
the present model practically preserves near-eigenstates. It follows indeed that
the measurement allows one to determine the kinetic energy with negligible
disturbance of any pre-existing (approximately sharp) value. Thus the distur-
bance version of the purported external time–energy uncertainty relation is
ruled out.

We show next in which sense the above momentum measurement scheme
serves as a measurement of kinetic energy. In fact the relation H0 = P 2

x/2m
translates into the following functional relationship between the spectral mea-
sures of H0 and Px: we have

H0 =
P 2
x

2m
=
∫ +∞

−∞

p2

2m
EPx (dp) =

∫ +∞

0

eEH0 (de) ,

and so

EH0 (Z) = EPx
(
h−1 (Z)

)
, Z ⊆ R

+, h (p) =
p2

2m
.

This suggests that in the above unsharp momentum measurement, one should
record such subsets R of the momentum spectrum, which are images of some
Z ⊆ R

+ under the map h−1. This leads to the following positive operators
that constitute a POVM on R

+:

EH0
f (Z) := EPx

f

(
h−1 (Z)

)
=
∫

R

f (p) EPx
(
h−1 (Z) + p

)
dp .

Let us assume the confidence function f is inversion symmetric, f (−p) =
f (p). Then, since the set h−1 (Z) is inversion symmetric, the convolution
χh−1(Z) ∗ f also shares this property. Hence the positive operators EH0

f (Z)
are actually functions of H0 and constitute a smearing of the spectral measure
of H0:

EH0
f (Z) = χh−1(Z) ∗ f (Px) = χh−1(Z) ∗ f

(
(2mH0)

1/2
)

=
∫

Z

(m

2e

)1/2

f
(
(2mH0)

1/2 − (2me)1/2
)

de . (3.9)

This is a corroboration of the fact that the unsharp momentum measurement
constitutes an unsharp measurement of energy. The expected readings and
their variances are obtained as follows:

〈pn〉f =
∫

R

pnf (p) dp =
(

1
g0Δt

)n
〈Pn
y 〉φ ,

then
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〈H0〉ϕ,f = 〈ϕ|
∫ ∞

0

eEH0
f (de)ϕ〉 = 〈H0〉ϕ +

(
1

g0Δt

)2
〈

P 2
y

2m

〉

φ

, (3.10)

and

Varϕ,f (H0) = 〈H2
0 〉ϕ,f − (〈H0〉ϕ,f)2

= Varϕ (H0) +
(

1
g0Δt

)4

Varφ

(
P 2
y

2m

)
+ 4

(
1

g0Δt

)2

〈H0〉ϕ

〈
P 2
y

2m

〉

φ

.

(3.11)

There is a distortion of the expected values towards slightly larger values, and
the energy measurement inaccuracy is measured by the last two terms in the
last equation. Both the distortion and the accuracy can be made arbitrarily
small by choosing a suitably large coupling parameter g0, although it must be
noted that the inaccuracy depends on the value of the object energy.

We conclude, therefore, in agreement with Aharonov and Bohm, that a
reproducible energy measurement is possible with arbitrary accuracy and in
arbitrarily short time.

However, very recently Aharonov and Reznik [12] have taken up the issue
again, considering this time–energy measurements carried out from within
the system. In this situation the conclusion is that due to a back reaction of
the energy measurement on the internal clock, an accuracy δE requires the
duration τ0, measured internally, to be limited by the uncertainty relation

τ0 δE ≥ � . (3.12)

What is actually shown in the analysis of [12] is that the clock rate is uncertain
and hence the duration has an uncertainty Δτ0 ≥ �/δE. This conclusion is
in accordance with the quantum clock uncertainty relation, which will be
presented in Sect. 3.5.

3.3.2 Relation Between Preparation Time and Energy

An uncertainty relation for the indeterminacy of the energy of a system and
the duration of an external perturbation has been proposed and accepted as
valid even by opponents to the external time–energy relation (cf. the review
of Bauer and Mello [2]). The duration of the perturbation is defined dynam-
ically as the approximate time period during which the interaction energy
is non-negligible. Hence this type of time–energy uncertainty relation is best
classified as one associated with dynamical time, although in a measurement
context the duration of interaction is fixed with reference to a laboratory
clock. A particular instance of this type of uncertainty relation occurs in the
preparation of a quantum system: the interaction with the preparation devices
can be regarded as an external perturbation so that one may note
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Tprep ΔE � � , (3.13)

where Tprep denotes the duration of the preparation (perturbation) and ΔE
is some suitable measure of the width of the energy distribution, such as those
introduced in Sect. 3.4.

This preparation time relation has been deduced by Moshinsky [13] in an
exactly soluble potential model of the preparation of a particle by means of
a slit with a shutter that is opened during a time interval Tprep. This time
period determines the width of the Bohr–Wigner time of passage distribution
(cf. Section 3.4.3, (3.26)), whereas the energy uncertainty ΔE is given by the
width of the energy distribution of the outgoing particle, given a sharp initial
energy E0:

p (E : E0, Tprep) ∝ E1/2 sin2 ((E − E0)T/2�)

(E − E0)
2 .

Similar distributions are known to arise for the short-time energy distribution
of a decaying state as well as in first-order perturbation theory. We conclude
that it is impossible to simultaneously prepare a sharp energy and a sharp
time of passage. This is an indication of the complementarity of event time
and energy.

A relation of the form (3.13) was derived in a somewhat different context
by Partovi and Blankenbecler [14]; they showed that the most likely state
compatible with the probability distributions of the position of a free particle
measured at two times with separation T has an energy dispersion that must
satisfy (3.13). These authors interpret the time interval T between the two
measurement as the duration of a multi-time measurement whose aim it is to
estimate the state that gives rise to the statistical data obtained.

3.4 Relations Involving Intrinsic Time

In this section we review different ways of quantifying measures of times that
are intrinsic to the system and its evolution.

3.4.1 Mandelstam–Tamm Relation

A wide class of measures of intrinsic times has been provided by Mandelstam
and Tamm [15]. An elegant formulation of the ensuing universal dynamical
or intrinsic time–energy uncertainty relations was given in the textbook of
Messiah. Let A be a non-stationary observable. Combining the Heisenberg
equation of motion for A,

i�
dA

dt
= AH −HA , (3.14)

with the general uncertainty relation,
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ΔρAΔρH ≥ 1
2
|〈AH −HA〉ρ| , (3.15)

and introducing the characteristic time

τρ (A) =
ΔρA∣∣ d
dt 〈A〉ρ

∣∣ (3.16)

(whenever the denominator is non-zero), one obtains the inequality

τρ (A) ΔρH ≥ 1
2

� . (3.17)

Here we have used the notation 〈X〉ρ = tr [ρX ], (ΔρX)2 = 〈X2〉ρ − 〈X〉2ρ.
As an illustration we consider the case of a free particle. Let A = Q

be the particle position and let ρ be a pure state represented by a unit
vector ϕ. Assume the momentum P is fairly sharply defined in that state,
i.e., ΔϕP � |〈P 〉ϕ|. Now the time derivative of position is the velocity,
d〈Q〉ϕ/dt = 〈P 〉ϕ/m = 〈V 〉ϕ, so we have

τϕ (Q) =
ΔϕQ

|〈V 〉ϕ|
. (3.18)

From the Schrödinger equation for a free particle we have

(ΔϕQ)2 = (ΔϕQ (0))2+(ΔϕV )2 t2+{〈Q (0)V + V Q (0)〉ϕ − 2〈V 〉ϕ〈Q (0)〉ϕ} t .

Using the uncertainty relation in the general form

(ΔϕQ)2 (ΔϕP )2 ≥ 1
4
|〈Q (0)P − PQ (0)〉ϕ|2

+
1
4
{〈Q (0)V + V Q (0)〉ϕ − 2〈V 〉ϕ〈Q (0)〉ϕ}2 ,

we find the estimate

(ΔϕQ)2 ≤ (ΔϕQ (0) + tΔϕV )2 .

Putting t = τϕ (Q), this gives

ΔϕQ ≤ ΔϕQ (0)
[
1 +

ΔϕP

|〈P 〉ϕ|

]1/2
∼= ΔϕQ (0) .

This estimate follows from the assumption of small variance for P , and this
corresponds to the limiting case of slow wave packet spreading. Thus the char-
acteristic time τϕ (Q) is indeed seen to be the period of time it takes the wave
packet to propagate by a distance equal to its width. It can also be said that
this is the approximate time for the packet to pass a fixed point in space.
Insofar as the position of the particle is indeterminate within approximately
ΔϕQ (0) one may be tempted to interpret this characteristic time as the in-
determinacy of the time of passage. The event ‘particle passes a point x0’ has
an appreciable probability only within a period of duration τϕ (Q).
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3.4.2 Lifetime of a Property

Let P be a projection, Ut = exp (−itH/�), ψ0 be a unit vector representing
the state of a quantum system. We consider the function

p (t) = 〈ψ0|U−1
t PUtψ0〉. (3.19)

The Mandelstam–Tamm relation yields
∣∣∣∣
dp

dt

∣∣∣∣ ≤
2
�
Δψ0H [p (1 − p)]1/2 .

Integration of this inequality with the initial condition p (0) = 1 yields

p (t) ≥ cos2 (tΔψ0H/�) , 0 ≤ t ≤ π

2
�

Δψ0H
≡ t0 . (3.20)

The initial condition means that the property P was actually in the state ψ0

at time t = 0. One may define the lifetime τP of the property P by means of
the condition p (τP ) = 1

2 . Hence one obtains the uncertainty relation

τP Δψ0H ≥ π �

4
. (3.21)

This relation was derived by Mandelstam and Tamm for the special case of
P = |ψ0〉〈ψ0|.

There are alternative approaches of defining the lifetime of a state and
obtaining an energy–time uncertainty relation for the lifetime. For example,
Grabowski [16] defines

τ0 =
∫ ∞

0

p (t) dt , (3.22)

which yields

τ0 Δψ0H ≥ �

2
, (3.23)

provided the Hamiltonian has no singular continuous spectrum.
The variance of H may be infinite in many situations, so that the above

relations are of limited use. We will review below a variety of approaches based
on alternative measures of the width of the energy distribution in a state ψ0.

3.4.3 Bohr–Wigner Uncertainty Relation

Fourier analysis gives ‘uncertainty’ relations for any wave propagation phe-
nomenon in that it gives a reciprocal relationship between the widths of the
spatial/temporal wave pattern on one hand and the wave number/frequency
distributions on the other. On the basis of this classical wave analogy, Bohr
[17] proposed a time–energy uncertainty relation, which appeared to assume
the same status as the corresponding position/momentum relation,
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ΔtΔE � h, ΔxΔp � h . (3.24)

Hilgevoord [5] presents a careful discussion of the sense in which a treatment
of time and energy variables on equal footing to position and momentum
variables is justified.

A more formal approach in this spirit was pursued by Wigner [18], who
considered a positive temporal distribution function associated with the wave
function ψ of a particle:

px0 (t) = |f (t) |2, f (t) = ψ (x0, t) . (3.25)

In the limit ΔψP � |〈P 〉ψ|, the width of this distribution is of the order of
τψ (Q). The quantity ΔE measures the width of the Fourier transform f̃ of f .

This method can be extended to other types of characteristic times. Define

f (t) = 〈ϕ|ψt〉, f̃ (E) = (2π)−1
∫ ∞

−∞
f (t) eitE/� dt , (3.26)

and the moments (providing the denominators are finite)

〈tn〉f =

∫∞
0

|f (t)|2 tn dt
∫∞
0

|f (t)|2 dt
, 〈En〉f̃ =

∫∞
0

∣∣∣f̃ (E)
∣∣∣
2

En dE

∫∞
0

∣∣∣f̃ (E)
∣∣∣
2

dE
. (3.27)

The previous case considered by Bohr is formally included by replacing |ϕ〉
with |x0〉, an improper position eigenstate. One obtains an uncertainty relation

for the variances (Δf t)
2 = 〈t2〉f − 〈t〉2f ,

(
Δf̃E

)2

= 〈E2〉f̃ − 〈E〉2
f̃
:

Δf tΔf̃E ≥ �

2
. (3.28)

It must be noted that neither of the distributions |f (t)|2 and
∣∣∣f̃ (E)

∣∣∣
2

is nor-
malised, nor will they always be normalisable. Moreover, their operational
meaning is not immediately obvious. The following is a possible, albeit indi-
rect, way of associating these distributions with physical measurements.

Assume the state ψ is prepared at time t = 0, and that at time t > 0
a repeatable measurement of energy is made and found to give a value in a
small interval Z of width δE and centre E0, after which a measurement of the
property Pϕ = |ϕ〉〈ϕ| is made. We calculate the probability for this sequence
of events, under the assumption that H has a non-degenerate spectrum with
improper eigenstates |E〉:

p = pψ
(
EH (Z) , Pϕ

)
= tr

[
PϕEH (Z) e−itH/� |ψ〉〈ψ| eitH/� EH (Z) Pϕ

]

=
∫

Z

dE

∫

Z

dE′ 〈ϕ|E〉 〈E′|ϕ〉 〈ψ|E′〉 〈E|ψ〉 e−it(E−E′)/�. (3.29)
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Assuming that Z is sufficiently small so that the functions 〈E|ψ〉 and 〈E|ϕ〉
are practically constant within Z, we have:

p ∼= |〈E0|ϕ〉|2 |〈E0|ψ〉|2 (δE)2 ∼=
∣∣∣f̃ (E0)

∣∣∣
2

(δE)2 . (3.30)

As an illustration we reproduce the standard formulas for the exponential
decay law. This is known to hold in an intermediate time range, while devi-
ations must occur for short as well as long times, see Sects. 2.5.2 and 2.5.3.
The Mandelstam–Tamm relation for the lifetime of a property already indi-
cates that the short-time behaviour of the survival probability is a power law
1 − p ∝ t2.

For H with non-degenerate spectrum, one has

f (t) = 〈ψ0|ψt〉 =
∫ ∞

−∞
e−itE/� f̃ (E) dE

∼= exp (− |t| (Γ/2�)− itE0/�) , (3.31)

f̃ (E) = |〈E|ψ0〉|2 ∼=
1
π

Γ/2
(E − E0)

2 + (Γ/2)2
. (3.32)

The Lorentzian distribution f̃ (E) has no finite variance, hence as an alter-
native measure of the energy spread one usually takes the full width at half-
height, δE = Γ . The lifetime τ of the state ψ0 is defined via

p (τ) = e−τΓ/� = 1/e , (3.33)

so that one obtains the famous lifetime–linewidth relation

τ Γ = � . (3.34)

One can also use the Wigner measures that are

Δf t =
�

2Γ
=

√
2τ , Δf̃E = Γ/2 . (3.35)

It must be noted that here the relevant distribution is
∣∣∣f̃ (E)

∣∣∣
2

= |〈E|ψ0〉|4.
Hence we have

Δf tΔf̃E =
√

2
2

� . (3.36)

A novel application of a Wigner-type uncertainty relation has been pro-
posed recently [19], which identifies f̃(E) as the energy amplitude of a state, in
which case the associated |f (t)|2 is found to coincide with the time-of-arrival
distribution due to Kijowski [20].

Another approach to defining a formal probability distribution for time
based on the statistics of measurements of a time dependent observable A was
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attempted by Partovi and Blankenbecler [14]. This approach presupposes that
the time dependence of the expectation A(t) := tr[ρ(t)A] is strictly monotonic.
It seems that the scheme of a proof of a time–energy uncertainty relation for
the dispersion of the ensuing time distribution provided in [14] gives tangible
results essentially when the (self-adjoint) operator A satisfies the canonical
commutation relation with the Hamiltonian, which is known to be possible
only in very special cases.

3.4.4 Further Relations Involving Intrinsic Time

In more realistic models of decaying systems, the measures of spread intro-
duced in Sect. 3.4.3 turn out inadequate. Bauer and Mello [2] have studied
alternative measures with a wider scope of applications. For example, they
define a concept of equivalent width, given by

W (φ) = (φ (x0))
−1
∫ ∞

−∞
φ (x) dx (3.37)

whenever the right-hand side is well defined. They then prove that the follow-
ing relation holds:

W (φ) W
(
φ̃
)

= 2π� . (3.38)

In the case of a decaying state,

φ̃ (E) =
∣∣∣f̃ (E)

∣∣∣
2

= |〈E|ψ0〉|4 ,

so that the inverse Fourier transform turns out to be the autocorrelation
function of f :

φ (t) =
∫ ∞

−∞
e−itE/�φ̃ (E) dE =

1
2π�

∫ ∞

−∞
f (t′) f (t + t′) dt′ = f × f (t) .

On proving the inequality
∣∣W
(
f × f

)∣∣ ≤ W (|f | × |f |), one obtains a time–
energy uncertainty relation for equivalent widths:

W (|f | × |f |) W

(∣∣∣f̃
∣∣∣
2
)

≥ 2π� . (3.39)

If the exponential decay formulas are inserted and the constant x0 = t = 0
(for f), and E = E0 (for f̃), then one obtains equality in the above relation.

It is interesting to observe that the autocorrelation function describes co-
herence in time. This is a useful measure of the fine structure of the temporal
distribution function p (t) = |f (t)|2.

A different approach to describing width and fine structure was taken
by Hilgevoord and Uffink (cf. the review of Hilgevoord [5, 6]), who adopted
the concepts of overall width and translation width from the theory of signal



88 P. Busch

analysis as follows. Let χ be a square-integrable function, normalised to unity,
and χ̃ its Fourier transform. The overall width W

(
|χ|2 , α

)
of the distribution

|χ|2 is defined as the width of the smallest time interval � such that
∫

�

|χ (t)|2 dt = α .

Then the following relation holds:

W
(
|χ|2 , α

)
W
(
|χ̃|2 , α

)
≥ C (α) , for α >

1
2

, (3.40)

with a constant C (α) independent of χ. This yields an energy–time uncer-
tainty relation in the spirit of the Wigner relation (3.28) if we put χ (t) =
f (t) = 〈ϕ|ψt〉, χ̃ (E) = f̃ (E); in the case of ϕ = ψ0 and H having a non-
degenerate spectrum, then f̃ (E) = |〈E|ψ0〉|2.

For the analysis of interference experiments, a relation between the overall
width of the energy distribution and the translation width of the temporal
distribution has proved enormously useful. The translation width w (f, ρ) is
defined as the smallest number t for which

|f (t)| = |〈ψ0|ψt〉| = 1 − ρ .

Then observing that f̃ (E) = |〈E|ψ0〉|2, Hilgevoord and Uffink [21] show:

w (f, ρ) W
(
f̃ , α

)
≥ 2� arccos

(
2 − α− ρ

α

)
, for ρ ≥ 2 (1 − α) . (3.41)

The lifetime–linewidth relation is recovered for any decaying state by putting
T1/2 = w

(
f,
√

1/2
)
, α = 0.9, which yields [6]

T1/2 W
(
f̃ , 0.9

)
≥ 0.9� . (3.42)

An interesting connection between the Mandelstam–Tamm relation and the
Hilgevoord–Uffink relation is pointed out in [22].

With this example we conclude our survey of intrinsic time–energy rela-
tions, without any claim to completeness. For example, a number of rigorous
results on the rate with which an evolving state ‘passes through’ a reference
subspace are reported by Pfeifer and Frohlich [23, 7]. We also recommend the
recent reviews of Hilgevoord [5, 6] as a lucid didactic account demonstrating
the importance of the translation width–overall width uncertainty relation in
substantiating Bohr’s rebuttal of Einstein’s attempts to achieve simultaneous
sharp determinations of complementary quantities.
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3.5 Quantum Clock

The constituents of real rods and clocks and other measuring devices are el-
ementary particles, atoms and molecules, which are subject to the laws of
quantum mechanics. Hence it is natural to investigate the effect of the quan-
tum nature of measuring instruments. This thought has played a leading role
in the early debates between Einstein and the other founders of quantum me-
chanics. By taking into account quantum features of the experimental setup,
Bohr was able to refute Einstein’s Gedanken experiments that were aimed at
beating quantum limitations of joint measurements of position and momen-
tum, or time and energy. Later Wigner exhibited limitations of space–time
measurements due to the quantum nature of test particles, and it was in this
context that he introduced the idea of a quantum clock [24, 25], see Chap. 8.

The issue of quantum clocks belongs, in a sense, to the realm of the the-
ory of time measurements: time is being measured by means of observing the
dynamical behaviour of a quantum system. However, the ensuing uncertainty
relations are clearly of the intrinsic-time type, and the theory of quantum
clocks is actually based on the theory of repeated measurements, or monitor-
ing, of a non-stationary quantum-nondemolition variable. By contrast, time as
an observable is recorded in experiments in which typically a detector waits to
be triggered by the occurrence of some event, such as a particle hitting a scin-
tillation screen. The latter type of event time measurement will be discussed
in Sect. 3.6.

The Salecker–Wigner quantum clock has experienced renewed interest in
recent years in three areas of research: investigations on the detectability of
the quantum nature of space–time on length scales far larger than the Planck
length (e.g. [26, 27]); studies of tunnelling times (e.g. [28]) and superluminal
photon propagation through evanescent media [29]; and quantum information
approaches for optimising quantum clock resolution [30] and synchronisation
via non-local entangled systems [31]. All of these questions and proposals are
subject to ongoing controversial scrutiny, so that it is too early to attempt
an assessment. Instead we will be content with a brief outline of the principal
features of a quantum clock and explain the relevance of the intrinsic time–
energy uncertainty relation in this context.

A quantum clock is characterised as a system that, in the course of its
time evolution, passes through a sequence of distinguishable states ψ1, ψ2, . . .
at (laboratory) times t1, t2, . . . . In order to be distinguishable as clock pointer
positions, neighbouring states ψk, ψk+1 must be (at least nearly) orthogo-
nal. Under this assumption, the time resolution defined by this system is
δt = tk+1 − tk. It is known that a non-stationary state that runs through n
orthogonal states in a period T must be a superposition of at least n energy
eigenstates. For a harmonic oscillator with frequency ω and period T = 2π/ω,
the state ψ1 =

∑n
k=1 ϕk/

√
n will turn into ψ2 perpendicular to ψ1 if δt = T/n.

It follows that the mean energy must be of the order �/δt = �n/T .
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If one considers the mean position of a wave packet as the clock pointer,
then according to the relevant Mandelstam–Tamm relation and the constraint
δt > τψ1 (Q) on the resolution, one obtains

δt ≥ �

2Δψ1H
.

These examples illustrate the fact that the rate of change of a property of
the system decreases with increasing sharpness of the prepared energy. In
the limit of an energy eigenstate, all quantities will have time-independent
distributions and expectation values, hence nothing happens.

Another requirement to be imposed on a system to ensure its functioning
as a quantum clock is that its pointer can be read in a non-disturbing way.
This can be achieved for suitable families of pointer states, such as coherent
states for the harmonic oscillator, which admit non-demolition measurements.
The relevant theory of quantum-nondemolition measurements for continuous
variables is developed in [32].

The quantum clock time–energy uncertainty relation can be derived in a
very general way from the intrinsic-time uncertainty relations reviewed above.
In order to achieve a time resolution δt, pairs of successive pointer states
ψ1 = ψt, ψ2 = ψt+δt need to be orthogonal: p (δt) = |〈ψt|ψt+δt〉|2 = 0. The
relation (3.20) implies

δt ≥ t0 =
π�

2Δψ1H
. (3.43)

As noted before, the variance is not always a good measure of the width of the
energy distribution. A more stringent condition on the clock resolution can
be obtained by application of the Hilgevoord–Uffink relation (3.41) between
temporal translation width and overall energy width. If the clock is a periodic
system, the resolution δt is given by the period divided by the number of
pairwise orthogonal states, δt = T/n. This entails that the state ψ1 has to
have a translation width of the order of at most δt. Hence (3.41) yields

δt ≥ w (f, ρ) ≥ 2� arccos ((2 − α− ρ) /α)

W
(
f̃ , α

) .

For a quantum clock, ρ should be close to unity. Taking ρ = 1 requires α ≥ 1
2 ,

and we have

δt ≥ 2� arccos ((1 − α) /α)

W
(
f̃ , α

) ≡ �C (α) ,
1
2
≤ α ≤ 1 .

Since both the enumerator and the denominator are increasing functions of α,
and since the quotient C (α) is 0 both at α = 1

2 (as arccos 1 = 0) and at α = 1

(as W
(
f̃ , 1
)

= ∞), it follows that there must be a value α0 where C (α) is
maximal. The inequality for the clock resolution must still hold at this point:
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δt ≥ �C (α0) . (3.44)

A universal quantum clock uncertainty relation in this spirit was proposed by
this author [3] and independently by Hilgevoord and Uffink [33].

3.6 Relations Based on Time Observables

Let us recall the motivation for considering time as a quantum observable.
First, there do exist a variety of experiments in which times of events are
recorded, where these events occur at randomly distributed instants as mon-
itored by means of laboratory clocks. The appropriate mathematical tool for
the representation of these temporal statistics is that of a POVM over the
time domain, which will be explained in Sect. 3.6.1. As an illustration of in-
trinsic time preparation and measurement inaccuracies, we will briefly review
the famous Einstein photon box experiment in Sect. 3.6.2 . Secondly, having
acknowledged the possible role of time as a random variable, the next question
that arises concerns the nature of the randomness: for example, is the instant
of decay of an unstable particle truly indeterminate, as would be appropri-
ate to a quantum observable, or is it determined by some possibly hidden
mechanism, albeit unpredictable? We shall argue in Sect. 3.6.3 that an inde-
terminacy interpretation is appropriate in the light of temporal interference
experiments.

3.6.1 Event Time Observables

A measurement of an ordinary quantum observable is typically devised so
as to provide an outcome at a specified instant of time. Often one aims at
achieving the impulsive measurement limit where the duration of the interac-
tion between object and probe is negligible, so that it makes sense to speak
of an (approximate) instant of the measurement.

By contrast, event time measurements are extended in time, with sensitive
detectors waiting to be triggered. The experimenter has no control over the
time instant at which the detectors fire. This very instant constitutes the
outcome of such a measurement.

Wigner [18] epitomises the distinction between these two types of measure-
ments in terms of the localisation of particles. The first type of measurement
amounts to measuring the position at a particular time. This will answer the
question: ‘Where is the particle – now?’ The second type of measurement
corresponds to a determination of the instant of time at which the particle
passes a particular point in space, thus answering the question: ‘When is the
particle – here?’

Following [3], we explain the term event to refer to the (approximate)
actuality of a property, in the sense that the probability for this property to
occur is equal to (or close to) unity. The event to be observed in the above
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time of passage experiment is the approximate localisation of the particle at
the given space point. We note that the Mandelstam–Tamm parameter τρ (Q)
seems to give an indication of the indeterminacy of the time of passage, owing
to the indeterminacy of position in the state ρ.

With the exception of the photodetection theory [34, 35], a theory of event
time measurements is very much in its initial stages. In the 1990s, interest
in the theory of time-of-arrival measurements has grown significantly and
ensuing results are reviewed in other chapters of this book. Here we focus on
the formal representation of event time observables in terms of POVMs.

Suppose a detection experiment is repeated many times until a sufficiently
large statistical distribution of times is obtained. A quantum mechanical ac-
count of the statistics will have to provide probabilities for the event times
to lie within intervals Z of the time domain. Such probabilities should be
expressed as expectation values of operators associated with each set Z, i.e.,
pρ (Z) = tr [ρFZ0 (Z)]. These probabilities should be approximately equal to
the observed frequencies. Here Z0 denotes an interval that represents the time
domain specified in the experiment in question. If the measurement can be
thought of as being extended from the infinite past to the infinite future, one
would have Z0 = R.

Due to the positivity of the numbers pρ (Z) for all states ρ, the operators
FZ0 (Z) will be positive. Similarly, since pρ (Z) ≤ 1, we have FZ0 (Z) ≤ I.
Finally, the (countable) additivity of probability measures entails the (count-
able) additivity of the FZ0 (Z) for disjoint families of sets Zk, i.e. FZ0 (∪Zk) =∑

k FZ0 (Zk). Taken together, these properties ensure that the family of
FZ0 (Z) constitutes a (not necessarily normalised) POVM over Z0. Due to the
nature of time measurements, one anticipates that certain events will never
occur (i.e., for no state ρ), so that indeed it may happen that pρ (Z0) < 1, or
FZ0 (Z0) < I.

Every observable can be characterised by its transformation behaviour
under the fundamental space–time transformations. In particular, time ob-
servables will transform covariantly under time translations:

UtFZ0 (Z)U−1
t = FZ0−t (Z − t) . (3.45)

Properties of such time observables and specific examples (mainly in the con-
text of decay observation) are studied in detail by Srinivas and Vijayalakshmi
[35]. Detection times are axiomatically characterised as screen observables
through further transformation covariance relations in work due to Werner [36].

Assuming that first and second moments for the POVM FZ0 are defined on
a dense domain, one can introduce a unique maximally symmetric (generally
not self-adjoint) time operator

T =
∫

Z0

t FZ0 (dt) .

We put t = tr [ρ · T ], then the temporal variance is defined as
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(ΔρT )2 =

∫
Z0

(
t− t

)2 tr [ρFZ0 (dt)]

tr [ρFZ0 (Z0)]
. (3.46)

The uncertainty relation (3.1) then follows for an event time observable and
energy if the observation period Z0 = R,

ΔρT ΔρH ≥ �

2
. (3.47)

For an event time POVM with a finite interval Z0, this relation is not generally
valid.

It is still true, as it was in 1990 [3], that a systematic quantum theory of
time measurements is lacking but will be necessary for an operational under-
standing of event time POVMs. The following examples may serve as guidance
for the development of a better intuition about time observables and measure-
ments.

Freely Falling Particle

For the Hamiltonian

Hg =
P 2

2m
−mgQ , (3.48)

one easily verifies that the following self-adjoint operator Tg is canonically
conjugate to H ,

Tg = − 1
mg

P . (3.49)

In fact this choice is suggested by the dynamical behaviour of the system:
solving the Heisenberg equation of motion gives P (t) = P − mgt I, where
P (0) = P . Time is measured dynamically as the linear increase of momentum.
In this case even the Weyl relations are satisfied:

eitH/� eihT/� = e−ith/� eihT/� eitH/� . (3.50)

As a further consequence, Tg and H act as generators of energy and time
shifts, respectively, in the sense of the covariance relations

eihT/� H e−ihT/� = H + hI , (3.51)
eitH/� T e−itH/� = T − tI . (3.52)

The associated time POVM is indeed a projection-valued measure, namely,
the spectral measure

ETg (Z) = EP (−mgZ) .

Both the covariance relations and the Weyl relation imply the Heisenberg
canonical commutation relation and hence the uncertainty relation (3.47).

It must be noted that the present Hamiltonian is unbounded, its spectrum
being absolutely continuous and extending over the whole real line. Thus the
obstruction due to Pauli’s theorem does not apply.
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Oscillator Time

We now consider the Hamiltonian (putting m = � = 1)

Hosc =
1
2
(
P 2 + Q2

)
. (3.53)

The spectrum consists of non-negative, equidistant values, so that there is no
unitary shift group, hence no self-adjoint operator T satisfying the Weyl rela-
tion (3.50) can exist. Nevertheless, classical reasoning suggests the existence
of a phase-like quantity that transforms covariantly (modulo 2π) under the
time evolution group. This leads to the introduction of a time POVM and
hence a periodic time variable proportional to the phase.

Introduce the ladder operator a = 1
2 (Q + iP ), which gives the number

operator N = a∗a, with eigenvalues n = 0, 1, 2, . . . and eigenvectors |n〉. Then
H = N+ 1

2I. For t ∈ [0, 2π], we introduce the formal, non-normalisable vectors
|t〉 =

∑
n eint |n〉, then we define

Fosc (Z) = (2π)−1
∫

Z

dt |t〉〈t| =
∑

n,m≥0

(2π)−1
∫

Z

ei(n−m)t dt |n〉〈m| .

It is easily verified that this defines a normalised, shift-covariant (mod 2π)
POVM.

This oscillator-time POVM yields a whole family of self-adjoint operators
canonically conjugate to Hosc: first define

T (0)
osc =

∫ 2π

0

t Fosc (dt) =
∑

m 	=n≥0

1
i (n−m)

|n〉〈m| + πI .

This operator was first constructed as a self-adjoint solution of the canoni-
cal commutation relation (3.3), thus refuting a widespread erroneous reading
of Pauli’s theorem. Consequently, this operator does satisfy the uncertainty
relation (3.47) in a dense domain (certainly not containing the energy eigen-
states). Strangely enough, this aspect of the interesting papers of Garrison
and Wong [37] and Galindo [38] has been widely ignored, while the fact as
such is repeatedly being rediscovered in recent years. Next we calculate the
time shifts of this operator,

T (t)
osc = eitH T (0)

osc e−itH = T (0)
osc − tI + 2πFosc ([0, t]) .

Here we are facing a covariant family of non-commuting, self-adjoint operators,
all of which satisfy the canonical commutation relation with H = Hosc. The
non-commutativity corresponds to the fact that the phase quasi-eigenvectors
|t〉 are mutually non-orthogonal, so that Fosc itself turns out to be a non-
commutative POVM.

Here we have given just one example of a covariant oscillator-time (phase)
POVM. There are in fact an infinite variety of such phase POVMs associated
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with Hosc. First significant steps towards a systematic account and operational
analysis of covariant oscillator phase POVMs have been recently undertaken
by Lahti and Pellonpää [39].

We note that a similar construction to the present one is possible for a
finite quantum system with a spin Hamiltonian

Hspin = βs3 ,

where s3 is the z component of the spin of a spin-s system. However, in this
case a canonical commutation relation and the Heisenberg uncertainty relation
are not valid.

Time POVMs vs Time Operators?

The preceding example shows in a striking way that observables may be more
appropriately represented by means of a POVM instead of just a self-adjoint or
symmetric operator: not only does the latter merely give the first moments of
the experimental statistics, but, as seen here, there may exist a high degree of
non-uniqueness in the choice of even a self-adjoint operator as a representative
of an observable (here the phase, or oscillator time). An approach to defining
event time observables taking into account the characteristic covariance may
help to remove these ambiguities.

Nevertheless, for specific systems for which the physics of time measure-
ments is well understood, the construction of canonical time operators may
be sufficient and adequate.

By providing some mathematical qualifications on Pauli’s claims concern-
ing self-adjoint time operators canonically conjugate to the Hamiltonian of
a physical system, Galapon [40, 41] made room for the construction of such
canonical time operators for certain positive Hamiltonians with non-empty
point spectrum. This was recently followed with a fresh approach to the time
of arrival operator for a free particle in [42, 43, 44]; see also Chapter 10. In
the next example we provide some general considerations on the search for
covariant POVMs corresponding to the time of arrival.

Free-Particle Time Observables

Seemingly obvious candidates of a time operator conjugate to the free-particle
Hamiltonian,

Hfree =
P 2

2m
,

are given by suitably symmetrised expressions for the time-of-arrival variable
suggested by classical reasoning, for example:

−1
2
m
(
QP−1 + P−1Q

)
or −mP−1/2QP−1/2 .
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While these expressions formally satisfy the canonical commutation relation,
they are not self-adjoint but only symmetric (on suitably defined dense do-
mains on which they actually coincide, see Sect. 10.4), and they do not possess
a self-adjoint extensions. Hence this intuitive approach does not lead to a time
observable in the usual sense of a self-adjoint operator conjugate to the free
Hamiltonian. For a long time, this observation has been interpreted by many
researchers as implying that time is not an observable in quantum mechanics.
But this view does not take into account the fact that there are detection
experiments that record the time of arrival of a particle, or more precisely,
the time when the detector fires. The statistics of such measurements are ap-
propriately described as probability distributions using suitable POVMs. For
the present case of a free particle there do indeed exist time-shift covariant,
normalised POVMs. An example is given by the following:

〈ϕ|Ffree (Z)ϕ〉 = (2π)−1
∫

Z

dt

{ ∣∣∣∣
∫ ∞

0

dp
√

p/m� exp
(
itp2/m�

)
ϕ̃ (p)

∣∣∣∣
2

+

+
∣∣∣∣
∫ 0

−∞
dp
√
−p/m� exp

(
itp2/m�

)
ϕ̃ (p)

∣∣∣∣
2 }

.

Early explicit constructions of such POVM time observables and more general
screen observables can be found in [45] and [36]. More recently, the question of
constructing time-of-flight observables as covariant POVMs has been intensely
studied; this development is reviewed in Chap. 10.

Time POVM associated with an effect.

The question of defining a time observable for any given type of event was
investigated by Brunetti and Fredenhagen [46] who were able to define a time
translation covariant POVM associated with a positive operator representing
the event in question (an effect, in the terminology of Ludwig [47]). These
authors also derived a new lower bound for the time uncertainty for covariant
event time POVMs on the time domain R, [48]:

ΔρT ≥ d

〈H〉ρ
(3.54)

Using their approach, Brunetti and Fredenhagen were able to rederive the
time delay operator of scattering theory. This work has inspired new model
investigations on the theory of time measurements [49, 50].

In order to illustrate Brunetti and Fredenhagen’s approach, we construct
a simple example of a covariant time POVM associated with a Hamiltonian H
with simple bounded, absolutely continuous spectrum [0, 2π]. One can think
of a particle moving in one spatial dimension, with its momentum confined to
the interval [0, p0], where p2

0/2m = 2π.
Let H be the Hilbert space L2(0, 2π) in which H acts as the multiplication

operator Hψ(h) = hψ(h). We choose a shift-covariant family of unit vectors
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ϕt, t ∈ R, as follows (putting � = 1): ϕt(h) = eiht/
√

2π. We can then define
a time-shift covariant POVM via

P (X) :=
∫

X

|ϕt〉〈ϕt| dt, X ∈ B(R). (3.55)

The normalization P (R) = I can be verified by considering the integral
∫

R

〈ψ|ϕt〉〈ϕt|ξ〉 dt.

for any ψ, ξ ∈ H, and showing that its value is 〈ψ|ξ〉. This follows readily
by observing that the function t �→ 〈ϕt|ξ〉 =: ξ̂(t) is the Fourier-Plancherel
transform ξ̂ =: Fξ of ξ ∈ H. Note that ξ̂ ∈ L2(R), and that F(H) is a proper
closed subspace of L2(R). Thus, we find that for ψ ∈ H,

FP (X)F−1ψ̂(t) = χX(t)ψ̂(t),

which corresponds to the Naimark extension of the POVM P to a spectral
measure on L2(R).

We are now in a position to compare the time observable (3.55) with the
general construction of Brunetti and Fredenhagen in [46]. Given a bounded
positive operator A, they consider the positive operator measure, defined first
on intervals J via

B(J) :=
∫

J

eitHAe−itH dt.

They then show that in certain circumstances this can be turned into a nor-
malized POVM on a suitable closed subspace (provided this is not the null
space). In the present case of the POVM (3.55), we see that the operator
corresponding to A can be identified with the one-dimensional projection op-
erator |ϕ0〉〈ϕ0|. In that case the normalization condition is already satisfied,
and B(J) = P (J) holds on H. The POVM P corresponds to a measurement
of the time that the system spends (loosely speaking) in the state φ0.

A formal time operator is obtained from the first moment operator of the
POVM P :

Tψ(h) =
∫

R

t ϕt(h)〈ϕt|ψ〉 dt = −i
d

dh
ψ(h) . (3.56)

This is well defined for functions ψ ∈ L2(0, 2π) which are absolutely continuous
and such that the derivative ψ′ ∈ L2(0, 2π). In order for this operator to
be symmetric, the domain must be further restricted by appropriate bound-
ary conditions. It is well known that the condition ψ(2π) = cψ(0) makes
−id/dh a self-adjoint operator T (c) for any c of modulus 1. Each such T (c)

is a self-adjoint extension of the differential operator understood as a sym-
metric operator T (0) with the boundary condition ψ(0) = ψ(2π) = 0. Note
that the spectrum of T (c) is Z, with eigenvectors ei arg(c)H/2πϕm, where
ϕm(h) = eimh/

√
2π, m ∈ Z.
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The covariance relation

eiτHTe−iτH = T − τI

is found to be satisfied for T (0) but not for any of its self-adjoint extensions
since eiτHT (c)e−iτH) = T (c′) with c′ = ei2πτ c. In accordance with this, the
canonical commutation relation between the Hamiltonian and the time opera-
tor is obtained only on the domain of T (0); therefore, the uncertainty relation
(3.47) holds on this dense subspace, with the variance of the time distribution
being defined via (3.46). Since the spectrum of H is a bounded interval of
length λ(H) = 2π, there is an absolute bound to the temporal variance in any
state ρ:

ΔρT ≥ �

2λ(H)
. (3.57)

These examples show that for a variety of Hamiltonians, event time ob-
servables can be defined as time-shift covariant POVMs, the form of which
is inferred by the aid of classical intuition or with reference to a class of
experimental situations. Where the first moment operator satisfies a canon-
ical commutation relation with the Hamiltonian on a dense domain, the
observable-time energy uncertainty relation will follow. Whether or not this
is the case depends on the nature of the spectrum of the Hamiltonian and the
time domain [35].

We conclude this brief survey of the problem of time-covariant POVMs
with the following pointers to some interesting related developments.

A connection between time observables represented by POVMs and irre-
versible dynamics has been explored by Amann and Atmanspacher [51].

Finally, there have been several studies of the representation of event time
observables in terms of POVMs in the wider context of relativistic quantum
mechanics and quantum gravity [52, 53, 54, 55, 56, 57]. It is too early and
beyond the scope of the present chapter to give a conclusive review of these
recent and ongoing developments.

3.6.2 Einstein’s Photon Box

A comprehensive theory of event time measurements is missing to date, so
that a first step towards an understanding of time as an observable seems
to be to carry out case studies. Here we will revisit briefly the Gedanken
experiment proposed by Einstein. In this experiment, a photon is allowed to
escape from a box through a hole, which is closed and opened temporarily by
a shutter. The opening time period is determined by a clock, which is part
of the box system. Einstein argued that it should be possible to determine
the energy of the outgoing photon by weighing the box before and after the
opening period. Thus it would seem that one can obtain an arbitrarily sharp
value for the energy of the photon, while at the same time the time period of
preparation or emission of the outgoing photon could be made as short as one
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would wish, by setting the clock mechanism appropriately. This conclusion
would contradict the preparation time–energy uncertainty relation (3.13).

Bohr’s rebuttal [58] was based on the observation that the accuracy of
the weighing process is limited by the indeterminacy of the box momentum,
which in turn limits the unsharpness of position by virtue of the Heisenberg
uncertainty relation for the box position and momentum. But an uncertainty
in the box position entails an uncertainty in the rate of the clock, as a con-
sequence of the equivalence principle. All this taken together, the accuracy of
the determination of the photon energy and the uncertainty of the opening
time do satisfy the uncertainty relation (3.1).

Bohr’s informal way of reasoning has given rise to a host of attempts,
by some, to make the argument more precise (or even more comprehensible)
or, by others, to refute it in defence of Einstein. In fact if Bohr’s were the
only way of arguing, the consistency of non-relativistic quantum mechanics
(replacing the photon with a (gas) particle) would appear to depend on the
theory of relativity. Hence several authors have considered different methods
of measuring the photon energy.

In his review of 1990, the present author has offered an argument that
makes no assumptions concerning the method of measurement and is simply
based on a version of quantum clock uncertainty relation. This argument goes
as follows. If the photon energy is to be determined with an inaccuracy δE
from the difference of box energies before and after the opening period, then
these energies must be well defined within δE, i.e., the box energy uncertainty
ΔE must satisfy ΔE ≤ δE. Then the clock uncertainty relation, either in the
Mandelstam–Tamm form (3.43) or the Hilgevoord–Uffink form (3.44), allows
us to conclude that the box system needs at least a time t0 ∼= �/ΔE in order to
evolve from the initial ‘shutter-closed’ state to the (orthogonal!) ‘shutter-open’
state (and back). During this transition time t0 it is objectively indeterminate
whether the shutter is open or closed. Accordingly, the time interval within
which the photon can pass the shutter is also indeterminate by an amount
ΔT = t0. We thus arrive precisely at Bohr’s relation

ΔT δE ∼= � . (3.58)

It seems satisfying that this derivation works without advocating the box
position–momentum uncertainty relation; instead it refers directly to the
quantum dynamical features of the box. Without going into an analysis of the
energy transfer between box and photon, it seems plausible that the energy
measurement uncertainty δE of the box, which corresponds to an uncertainty
of the box energy, will give rise to an uncertainty of the energy of the escap-
ing photon. Similarly, the uncertainty in the shutter opening time gives a
measure of the uncertainty of the time of passage of the photon through the
hole. Hence the box uncertainty relation admits the following interpretation
also: it is impossible to determine the energy and time of passage of a par-
ticle with accuracies better than those allowed by this uncertainty relation.
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Thus the measurement uncertainty relation (3.58) accords with the dynami-
cal Mandelstam–Tamm relation for the characteristic time τρ (Q), (3.17), and
thus with the preparation time–energy relation (3.13).

It is also interesting to note the close analogy between this experiment and
the double-slit experiment where similar debates between Bohr and Einstein
took place concerning the possibility of jointly determining the position and
momentum of a particle. Time of passage and energy are complementary
quantities in the same sense as position and momentum: the arrangements
for determining time (position) and energy (momentum) are mutually exclu-
sive. However, while these conclusions have been corroborated in the case
of position and momentum with appropriate quantum mechanical joint mea-
surement models (for details and a survey of this development, cf. [10]), a
similarly comprehensive treatment for time and energy is as yet waiting to be
carried out. Only very recently a first scheme of joint measurements of energy
and time of arrival has been proposed [59] along the lines of the position–
momentum measurement model due to Arthurs and Kelly.

3.6.3 Temporal Interference and Time Indeterminacy

In the preceding sections we have repeatedly referred to temporal indetermi-
nacies of events such as the passage of a particle through a space region, and
we have motivated this interpretation indirectly by invoking the quantum in-
determinacies of the relevant dynamical properties. The analogy between the
time–energy complementarity and the position–momentum complementarity
that emerges in the context of the Einstein’s photon box (a point strongly
emphasised by Cook [60]) suggests, however, that it should be possible to ob-
tain direct experimental evidence for the appropriateness of the indeterminacy
interpretation of time uncertainties. In the case of position and momentum,
the indeterminacy of the location of a particle passing through a screen with
two slits is demonstrated by means of the interference pattern on the capture
screen, which images the fine structure of the associated momentum amplitude
function. As a simple model illustration, if the wave function of the particle
at the location of the slit is given as

ψ0 (x) =

⎧
⎨

⎩

(4a)−1/2 if A− a ≤ |x| ≤ A + a ,

0 elsewhere ,

then the momentum amplitude is given as the Fourier transform,

ψ̃0 (p) = 2
√
a cos (Ap)

sin (ap)
ap

.

If the slit width a is small compared to the distance between the slits then the
factor (sin (ap) /ap)2 describes the slowly varying envelope of the momentum
distribution while the factor cos2 (Ap) describes the rapid oscillations that
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constitute the interference pattern. If the path of the particle were known,
one would have an incoherent mixture of two packets travelling through the
slits, and no interference would appear. Hence the ignorance interpretation
regarding the two paths is in conflict with the presence of the interference
pattern, which is due to the coherent superposition of the two path states. In
other words, the path is indeterminate, and it is objectively undecided through
which slit the particle has passed.

In a similar way, if one were able to offer a particle a multiple temporal
‘slit’, then the indeterminacy of the time of passage would be reflected in an
interference pattern in the associated energy distribution. As it turns out,
experiments exhibiting such diffraction in time, or temporal interference, had
already been carried out in the 1970s. In the experiment of Hauser, Neuwirth,
and Thesen [61], a beam of Mössbauer quanta is emitted from excited 57Fe
nuclei, with a mean energy of E0 =14.4 keV and a lifetime τ = 141 ns,
and is sent through a slit that is periodically closed and opened by means
of a fast-rotating chopper wheel. Then the energy distribution of the quanta
is measured. The count rate is around 3000 events per second, so that on
average there is about one photon within 2000 lifetimes passing the device.
This suggests that one is observing interference of individual photons. We
briefly sketch the analysis and interpretation proposed in [3].

The amplitude incident at the chopper,

f0 (t) = e−t/2τ e−iω0t , ω0 = E0/�, t ≥ 0 ,

is modulated into
f (t; t0) = f0 (t) χ (t; t0) .

Here the chopping function χ is equal to 1 for all t > 0, which fall into
one of a family of equidistant intervals Zk of equal length Topen distributed
periodically, with period Tchop, over the whole real line. For all other values
of t we have χ (t) = 0. The time parameter t0 indicates the difference between
the zero point of the decay process and the beginning of a chopping period;
its value is distributed uniformly over a chopping period if a large ensemble
of events is observed.

The Fourier transform of f0 reproduces the Lorentzian shape of (3.32).
The energy distribution obtained behind the chopper should be given by the
Fourier transform of f (t; t0),

f̃ (ω; t0) =
∫

R

dt f (t; t0) eiωt =
∑

k

∫

Zk

dt f0 (t) eiωt =
∑

k

f̃k (ω; t0) .

Hence, the expected spectral intensity is

I (ω; t0) =
∣∣∣f̃ (ω; t0)

∣∣∣
2

=

∣∣∣∣∣
∑

k

f̃k (ω; t0)

∣∣∣∣∣

2

. (3.59)
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This corresponds to a coherent superposition of the temporal partial packets
fk (t; t0). The observed distribution is obtained by averaging I (ω; t0) over one
chopping period with respect to t0,

I (ω) =
1

Tchop

∫ Tchop

0

dt0 I (ω; t0) . (3.60)

Now, if one assumed the time window through which each photon passes to
be objectively determined (albeit possibly unknown), then one would predict
the t0-average Iob (ω) of the spectral distribution

Iob (ω; t0) =
∑

k

∣∣∣f̃k (ω; t0)
∣∣∣
2

. (3.61)

A calculation yields that the shape of the distribution Iob (ω) is very similar to
a somewhat broadened Lorentzian curve, whereas I (ω) shows a sharp central
peak and several distinguished, symmetric side peaks of much smaller am-
plitudes. The latter is in excellent agreement with the experimental spectral
data.

The increase of the overall width of the spectral distribution can be seen
as a consequence of the temporal fine structure introduced by the action of
the chopper. Similarly, the fine structure of the spectral distribution is linked
to the overall width of the temporal distribution: the latter is of the order
of the lifetime, while the former is approximately equal to the undisturbed
linewidth. This behaviour is in accordance with the Hilgevoord–Uffink rela-
tion (3.41) between the overall width and the translation width for a pair of
Fourier-related distributions, which is thus found to be (at least qualitatively)
confirmed.

We conclude that the spectral interference pattern exhibited in this ex-
periment demonstrates the non-objectivity, or indeterminacy of the time of
passage of the photon through the chopper. It is tempting to go one step
further and claim that the time of the emission of the photon is equally inde-
terminate.

In 1986, time indeterminacies were demonstrated for material particles,
in an observation of quantum beats in neutron interferometry by Badurek
et al. [62]. Similar temporal diffraction experiments have been carried out in
recent years with material particles, namely atoms [63] and neutrons [64]. The
results obtained are in agreement with the time–energy uncertainty relation.
The issue of the (non-)objectivity of event times has also been investigated
from the perspective of Bell’s inequalities. In a seminal paper of Franson [65],
an interference experiment with time–energy entangled photons was proposed.
Subsequent measurements by Brendel et al. [66] and Kwiat et al. [67] yielded
observed fringe visibilities in accordance with quantum mechanical predictions
and were significantly larger than allowed by a Bell inequality that follows
from classical reasoning.
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3.7 Conclusion

We summarise the main types of time–energy uncertainty relations

ΔT ΔE � � (3.62)

and their range of validity depending on the interpretation of the quantities
ΔT and ΔE:

(1) A relation involving external time is valid if ΔT is the duration of a
perturbation or a preparation process and ΔE is the uncertainty of the energy
in the system.

(2) There is no limitation to the duration of an energy measurement and
the disturbance or inaccuracy of the measured energy.

(3) There are a variety of measures of characteristic, intrinsic times, with
ensuing universally valid dynamical time–energy uncertainty relations, ΔE
being a measure of the width of the energy distribution or its fine struc-
ture. This comprises the Bohr–Wigner, Mandelstam–Tamm, Bauer–Mello,
and Hilgevoord–Uffink relations.

(4)Event time observables can be formally represented in terms of posi-
tive operator-valued measures over the relevant time domain. An observable
time–energy uncertainty relation, with a constant positive lower bound for
the product of inaccuracies, is not universally valid but will hold in spe-
cific cases, depending on the structure of the Hamiltonian and the time
domain.

(5) Time measurements by means of quantum clocks are subject to a dy-
namical time–energy uncertainty relation, where the time resolution of the
clock is bounded by the unsharpness of its energy, δt � �/ΔE.

(6) Einstein’s photon box experiment constitutes a demonstration of the
complementarity of time of passage and energy: as a consequence of the quan-
tum clock uncertainty relation, the inaccuracy δE in the determination of
the energy of the escaping photon limits the uncertainty ΔT of the opening
time of the shutter. This is in accordance with the energy measurement un-
certainty relation based on internal clocks discovered recently by Aharonov
and Reznik.

(7) Temporal diffraction experiments provide evidence for the objective
indeterminacy of event time uncertainties such as time of passage.

Finally we have to recall that:
(8) A full-fledged quantum mechanical theory of time measurements is still

waiting to be developed.
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4.1 Introduction

It is ironic that experimentally time is the most accurately measured physical
quantity, while in quantum mechanics one must struggle to provide a defini-
tion of so practical a concept as time of arrival. Historically, one of the first
temporal quantities analyzed in quantum mechanics was lifetime, a property
of an unstable state. The theory of this quantity is satisfactory in two ways.
First, with only the smallest of white lies, one predicts exponential decay,
and generally this is what one sees. Second, at the quantitative level, one
finds good agreement with a simply derived formula, the Fermi–Dirac Golden
rule,

Γ =
2π
�

ρ(E)|〈f |H |i〉|2 . (4.1)

Equation (4.1) uses standard notation. Γ is the transition rate from an initial
(unstable) state |i〉 to a final state |f〉. The transition occurs by means of a
Hamiltonian H . The density of (final) states is ρ, evaluated at the (common)
energy of the states |i〉 and |f〉. In terms of Γ , the lifetime is τL = 1/Γ .

The lifetime τL is not a property of any one atom (or whatever), but rather
of an ensemble of like atoms. For much of the twentieth century this was suf-
ficient. One was taught not to inquire too closely about the time evolution
of an individual member of an ensemble. An exception to this informed ne-
glect arose as technology allowed experimentalists to focus on transitions in
individual atoms [1]. Although one can recast these phenomena in ensemble
terms, the ensemble is typically conditioned on the fact of the ultimate decay
of the system studied. But a similar extension of naive ensemble interpreta-
tions was already present in studies of tunneling time. The barrier penetration
phenomenon of quantum mechanics was sufficiently provocative in its denial
of classical notions that one sought places where conventional ideas could be
applied, e.g., trying to assign a time of passage through the barrier. This sub-
ject has a long history and a collection of recent views can be found in [2].
Again, in principle, for barrier penetration one deals with ensembles, but if one
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measures passage time there would need to be conditioning on the fact of the
transition, observations of individual transits, and a time interval measured
for each. Our notation for tunneling time (without distinguishing among the
many definitions) is τT.

The tunneling-time concept allowed further probes of the Copenhagen
view of quantum mechanics. A decaying particle, for example, a nucleus in
the Gamow model of alpha decay, was said to undergo a quantum jump. The
idea (I guess) was that you could measure the particle in its initial state or
in its final state. But getting from one to the other was a “jump.” It took a
measurement to distinguish one state from the other, putting the jump itself
beyond the scope of quantum mechanics, or at least of ordinary unitary time
evolution. However, if one could ascribe to the particle a trajectory under the
barrier, along with a time during which the particle tunnels, then one has
made the first steps in the analysis of this “jump.” Assigning a trajectory is
problematic [3], although several authors have used the Feynman path integral
[4, 5, 6], acknowledging the limitation that the path contributions only add
as amplitudes, not probabilities.

A different “quantum jump” was exhibited experimentally in the 1980s
[7, 8, 9]. This involved an atomic transition for a single atom. There was not
any “path under a barrier” and as indicated the notion of ensemble needed
updating. In particular, one could no longer muddle the distinction between
an abstract ensemble and the large number of atoms participating in decay
experiments.

In these experiments [7, 8, 9] one monitored the atom closely, noting when
it was in its excited state. The duration of its stay in the excited state was
(quantumly) random, and repetition of the experiment gave statistics that
could be used to evaluate the lifetime. But from the data it was evident that
something else was happening—the famous or infamous jump—and that its
timescale, if any could be defined for it, had little to do with lifetime.

The question that I raised [10] was whether one could say anything about
the time interval that elapses between finding the atom in one state and find-
ing it in the other. One does not need the drama of [7, 8, 9] to ask this ques-
tion. Radium (226Ra) has a half-life of about 1600 year and one can imagine
putting a single such nucleus in an inert matrix and waiting to see an α-decay.
(This is similar to the experiments cited, where seeing nothing meant that the
system was still in its metastable state.) The interval between being in one
state and being in the other is certainly brief. But is it, as early and perhaps
loose interpretations of measurement theory would have it, instantaneous?
Another example goes back to arguments for the quantized nature of light, as
demonstrated by the photoelectric effect. The “instantaneous” appearance of
electrons when ultraviolet light was turned on was a blow to classical inter-
pretations [11]. But again, “instantaneous” is a matter of technology, and the
bounds on this time interval were only about a nanosecond.

In this chapter I will define two times, each related to the question asked.
But they are in general quantitatively different from one another. The times
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Table 4.1. Characteristic times

Time Name Description

τL Lifetime Usual lifetime for decay, �/2πρ(E)|〈f |H |i〉|2
τZ Zeno time Inverse of energy spread, �/

√〈ψ|(H − Eψ)2|ψ〉
τJ Jump time τ 2

Z/τL
τT Tunneling time As in barrier penetration
τP Passage time Minimum time to go from a state to a ⊥ one, πτZ/2
τR Response time A property of monitoring apparatus
τPM Pulse time Interval between ideal pulsed measurements (cf. QZE)
τDoor Door time Metaphorical

are called jump time and passage time. Roughly speaking, the first measures
how long it takes for the transition process to get seriously underway and the
second measures how long it takes to complete the process in a single exemplar.
But it is better not to use too much verbal description. From the definitions
below and from the applications, the relevance of each should emerge.

The jump time is designated by the symbol τJ. In Sect. 4.2 I will moti-
vate my definition and arrive at a quantitative expression. The considerations
parallel arguments arising in the quantum Zeno effect (QZE). The formula
for τJ turns out to be the next simplest thing you could construct from the
Hamiltonian after (4.1).

The passage time, designated τP, has a precise mathematical definition,
although in a specific experimental situation it will depend on the apparatus
as well as on the system undergoing the transition. It arises from a bound on
the minimum time for a state to evolve (with given Hamiltonian) to a state
orthogonal to itself.

Definitions are tested by what you can do with them, what they unify. I
will show that τJ arises in several contexts. It is a generalization of tunneling
time (τT). It satisfies a kind of time–energy uncertainty relation. For certain
transitions it establishes the experimentally observed timescale, although for
atomic decays it is immeasurably short. Passage time is related to a theoretical
bound found by Fleming [12], a bound not hampered by requiring notions of
what a “measurement” is supposed to be. Although with respect to my own
ideas on quantum measurement theory τP may prove more significant than τJ,
its dependence on the measuring apparatus limits its general applicability.

Finally, because of the many characteristic temporal quantities that will
be defined here, I have included Table 4.1 for reference.

4.2 Jump Time

How long does it take to walk through a doorway? Call this time τDoor. Con-
sider the following experiment. A stream of people pass through a door, one
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at a time. From time to time, and without looking, I fire a marshmallow
across the doorway. Anyone hit by a marshmallow must turn back. Assume
the marshmallow crosses the doorway instantaneously. If I fire N times during
a time interval of duration T , then I expect to turn back a fraction NτDoor/T
of the people. An experiment to measure τDoor would consist of gradually in-
creasing the marshmallow firing rate until no one can cross. The estimate for
τDoor would then be T/N . In other words, when my firing rate reaches 1/τDoor

I stop the traffic. Without further refinements this measurement would not
define τDoor by better than a factor 2, i.e., it defines a timescale, rather than
a precise time.

The same perspective motivates the definition of quantum jump time.
The decay, or other quantum transition, corresponds to getting through the
door. The process-terminating interruption is an “observation,” a quantum
measurement. As for tunneling time, the use of classical concepts means that
the doorway analogy is incomplete.

We formalize the discussion: at intervals δt project onto the initial states,
i.e., measure whether the system is still in its initial state. If these disturbances
do not slow the decay, then δt is to be considered longer than the jump. On
the other hand, if these projections do slow the decay, then they have reached
its timescale. In this way I arrive at a context similar to that of the quantum
Zeno effect [13].

Let the system begin in a state ψ and let the full Hamiltonian be H . After
a time δt, ψ evolves to exp(−iHδt/�)|ψ〉. One checks for decay by applying
〈ψ|. The probability that it is still in ψ is p(δt) = |〈ψ| exp(−iHδt/�)|ψ〉|2. A
short calculation shows that

p(δt) = 1 −
(

δt

τZ

)2

+ O(δt4) , (4.2)

where

τ2
Z ≡ �

2

〈ψ|(H − Eψ)2|ψ〉 (4.3)

and Eψ ≡ 〈ψ|H |ψ〉. I call τZ the “Zeno time,” notwithstanding my lack of full
concurrence with the classical allusion [14].

Remark: It is worth taking a second look at the derivation of (4.2), since
the appearance of high-frequency terms in the off-diagonal matrix elements
has exercised some authors [15]. Let

f(t) ≡ 〈ψ| exp(−i(H − Eψ)t/�)|ψ〉 .

First, assume that this function has at least three derivatives in [0, t], so that
in particular, besides Eψ , 〈ψ|H2|ψ〉 and 〈ψ|H3|ψ〉 must be finite. Then by
standard theorems, one can write f(t) = 1 − (t/τZ)2/2 + t3

...
f (t∗) for some t∗

between 0 and t. Calculating |f |2 (to get p(t)) shows the deviation from 1 −
t2/τ2

Z to be no larger than O(t3). When a fourth derivative exists, Re
...
f (0) = 0

implies (4.2).
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Now suppose that many projections are made during a time t, carried out
at intervals τPM. Then to leading order, at t, the probability of being in ψ is

p Interrupted(t) =
[
p(τPM)

]t/τPM

≈
[
1 −

(
τPM

t

tτPM

τ2
Z

)]t/τPM

≈ exp
(
−tτPM/τ2

Z

)
.

(4.4)
To define a jump time, we want to know whether this differs from standard
decay. Without projections the probability for being in ψ is

pUninterrupted(t) = exp(−t/τL) (4.5)

with τL ≡ 1/Γ the usual lifetime (“Γ” of (4.1)). Comparing (4.4) and (4.5),
we see that the interrupted decay will be slower for τPM < τ2

Z /τL [16]. We are
thus led to define the “jump time” as the time for which the slowdown would
begin to be significant, namely

τJ ≡ τ2
Z /τL . (4.6)

In words, τJ is the time such that if one inspected a system’s integrity at
intervals of this duration, the decay would be slowed significantly [10, 17].

Remark: Because my goal is only to define a timescale, I do not attempt
greater precision. For example, in (4.5), because of the initial quadratic de-
pendence, one may want to change the extrapolated time-zero value. For our
purposes, however, the normalization is irrelevant, since it is the decay rate
whose equality fixes τJ.

Remark: Recall that (4.1) uses the first moment of the Hamiltonian. The
jump-time definition, (4.6), involves the second moment, in a way, the simplest
step beyond minimal decay information.

4.3 Corroborations of the Definition

The usefulness of jump time will be demonstrated in a number of contexts:
(1) comparison with tunneling time; (2) time–energy uncertainty principle;
(3) reconciling continuous measurement with the QZE; and (4) experiments
on the quadratic regime of decay.

4.3.1 Comparison with Tunneling Time

In [14] a simple example of quantum tunneling was studied in an effort to
estimate τZ. There is an interesting complication in this calculation, namely
the dependence of τZ on the initial state (ψ of (4.3)). This complication is
the reflection of a recurrent problem: What is a metastable state? For τL

this question is not critical, since by the time the exponential decay sets in,
transients have disappeared. But now it is the transients we study. Our choice
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in [14] was to minimize the second moment of the Hamiltonian, hence to
maximize τZ. With this approach we found, with fairly rough approximations,
that

τ2
Z = τLτT . (4.7)

Comparing this to (4.6), it is seen that for this kind of transition, the tunneling
time is the jump time.

4.3.2 Time–Energy Uncertainty Principle

An interpretation of τJ in terms of bandwidth and uncertainty relations can
be found by combining (4.3), for τZ, with (4.1), for lifetime, τL. After some
manipulation one obtains (|ψ〉 = |i〉, the initial state)

τJ =
τ2
Z

τL

=
1

∫
dE
2π�

ρ(E)
ρ(Eψ)

|〈E|H−Eψ|ψ〉|2
|〈f |H|ψ〉|2

. (4.8)

Because of the orthogonality of the initial and final states, one can insert a
“−Eψ” into the Golden rule matrix element. Thus the ratio

ρ(E)
ρ(Eψ)

|〈E|H − Eψ |ψ〉|2
|〈f |H |ψ〉|2 (4.9)

is of order unity when E passes through Eψ . As E moves away from Eψ a
variety of patterns is possible, depending on the specific physical situation.
One scenario is for this ratio to become smaller, mainly because with increas-
ing energy deviation, |E〉 becomes rather different from |i〉 [18]. In any case,
this ratio, whose numerator incorporates transitions to all possible on-shell
and off-shell states, measures the ability of the Hamiltonian H to move the
system away from its initial state. One thus has a band of accessible transition
states.

With this perspective, τJ is (the inverse of) an integral over energies (or
frequencies) of an order unity function describing the modulation of the low-
est band of accessible states. It follows that τJ is the inverse bandwidth for
the transition. This is a completely reasonable conclusion: you would like to
create a situation where the system’s transition is sudden. Your success is
governed by the frequencies available. The accessibility of those frequencies is
the essence of the bandwidth. This makes the jump time a reflection of a kind
of time–energy uncertainty relation. As such it is a statement of this relation
that is consistent with the views expressed in [19].

4.3.3 Reconciling Continuous Measurement with the QZE

The sequence of infinitely rapid projections envisioned in the usual derivation
of the quantum Zeno effect is hardly the way measurements actually take
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place. Mostly they could be described as “continuous,” in the following sense.
An apparatus monitors a system and when some particular event takes place
it is triggered and reports that event. Before that report, the apparatus, by its
silence, is telling you, “No, the event has not yet taken place.” If this picture is
true, then one should expect all decay to be suppressed, since the unwavering
attention of the apparatus should act like a continuous check – effectively with
a zero time interval between measurements – that no decay has taken place.

This problem was addressed some years ago by several authors [20, 21, 22,
23], some of whom also wished to dispense with the (perhaps metaphysical)
traditional notion of “measurement” and instead include the apparatus as
part of the quantum system. They found that adding apparatus-like terms to
the Hamiltonian could stop or slow the decay.

In recent work [24], I found that the important criterion for determining
which “continuous” measurements could affect decay (or any transition) was
a comparison of two quantities: the response time of the apparatus and the
jump time of the system being measured. The essential physical idea is that
no measurement is “instantaneous” and any apparatus represents a sequence
of physical processes, first getting the signal to the apparatus and then having
the apparatus register that signal – the latter typically involves irreversible
amplification. What I found was that when the response time of the apparatus,
τR, was on the order of τJ the decay would be hindered. In particular, an
apparatus with response time τR had the same effect in slowing the decay as
idealized pulsed measurements with pulse time τPM = 4τR. Moreover, from
the development of Sect. 4.2 of the present article, τPM should be less than or
equal to τJ for there to be a significant effect. Consequently the same criterion
should hold for τR. This prediction—including the factor 4—has recently been
tested experimentally [48] and indeed it turns out that the response time of
the apparatus plays the role of pulse time with respect to the QZE.

The demonstration proceeds by making a model of a decay plus an appa-
ratus that “continuously” monitors that decay. The model Hamiltonian and
wave function for the decay alone are

H =
(

0 Φ†

Φ ω

)
and ψ =

(
x

y

)
, (4.10)

where x ∈ C, Φ and y are complex column vectors of the same dimension,
and ω is a diagonal matrix. The Schrödinger equation (with � = 1) becomes

iẋ = Φ†y , iẏ = ωy + Φx . (4.11)

One can derive the decay rate from (4.11) by assuming the time dependence
exp[−i(E − iΓ/2)t] for both x and y. One obtains

E − i
Γ

2
= Φ† 1

E − ω − iΓ/2
Φ −→

∫
dω

ρ(ω)|φ(ω)|2
E − ω − iΓ/2

(4.12)

where the arrow indicates a continuum limit, ρ is the density of states,
and φ the appropriate limit of Φ. The usual manipulations now give
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Γ = 2πρ(0)|φ(0)|2, the Fermi–Dirac golden rule. The Zeno time for the state
with x = 1 (and y = 0) is simply τZ = 1/

√
Φ†Φ.

The Hamiltonian in (4.10) can be thought of as describing a two-level
atom coupled to the electromagnetic field. For ψ† = (x∗, 0) the atom is in the
unstable state (call this level #1), while ψ† = (0, y†) describes the decayed
atom (in level #2) with photon(s) emitted. As a monitoring device we imagine
another system coupled to the atom that allows the atom to decay once more
(to atomic level #3), emitting one or more additional photons, providing
sufficient decoherence for this to be considered a measurement. The coupling
strength between levels 2 and 3 will be thought of as adjustable (perhaps
some function of an external electric field). Such a model is embodied in the
following Hamiltonian

H =

⎛

⎝
0 Φ† 0
Φ ω Θ†

0 Θ W

⎞

⎠ . (4.13)

The additional levels, {W}, can be thought of as the apparatus and Θ is the
2–3 coupling. We assume that the levels are numerous enough and so dis-
tributed that the transition induced by this coupling is effectively irreversible.

To see how the combined system behaves we make a substitution similar
to that done above: all components of the wave function are given the time
dependence exp(−izt). One obtains

z = Φ† 1
z − ω −Θ† 1

z−WΘ
Φ . (4.14)

In the usual way (which was implicit above), 1/(z−W ) is evaluated using the
formula 1/(x± iε) = P (1/x) ∓ iπδ(x). We write the result as

Θ† 1
z −W

Θ = ΔE − i
Γθ
2

. (4.15)

This formula uses the reasonable assumption that Θ does not depend on which
photon was emitted in the 1–2 transition. Γθ is the essential descriptor of the
apparatus, indicating the rate at which it takes the atom from level #2 to
level #3. The inverse of Γθ is thus the response time of the apparatus, which
we denote τR. Equation (4.15) is inserted in (4.14) to yield

z = Φ† 1
z − ω −ΔE + i

2τR

Φ . (4.16)

We next assume that the response time is so small that its inverse dominates
the z − ω −ΔE term in the denominator of (4.16). The imaginary part of z
is thus a transition rate away from the initial excited state, in the presence of
the observing apparatus. Writing Im z = −Γeffective/2, (4.16) implies

Γeffective =
4τR

τ2
Z

(4.17)
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(using Φ†Φτ2
Z = 1, which is still true for the full H , including the apparatus).

If ΔE is itself comparable to 1/τR there is a slight modification of (4.17),
reducing Γeffective, but unless τRΔE � 1 this does not change our qualitative
conclusions.

The expression (4.17) is to be compared to the effective decay rate when
under pulsed idealized observation, as conventionally described in the QZE.
From our (4.4), this rate is τPM/τ2

Z . Comparing this with (4.17), we see that
the same degree of hindrance is obtained for an apparatus with response time
τR and pulsed measurements (projections) at intervals τPM, provided

τR = τPM/4 . (4.18)

Moreover, as discussed in Sect. 4.2, neither interruption will slow the decay
unless it is <∼ τJ . As indicated, the relation (4.18) has been checked experi-
mentally [48].

Remark: Once one deals with Hamiltonians and ordinary unitary evolution
(rather than mysterious wave function “collapses”) both for the “system”
and for the “apparatus,” another perspective is opened for understanding the
hindering of decay because of continuous, rapid-response observation [25]. One
starts with a system (with Hamiltonian (4.10)), which has a continuum into
which to decay. Coupling a detector to this can be thought of as changing the
spectral properties of the combined system. In particular what it can do is
push the energy of the excited level and the continuum into which it decayed
away from one another. Thus the halting of decay occurs because there are
no longer levels that match (including the photon energy) the energy of the
excited atom. This is discussed in [25] and [24]. A continuous version of the
anti-QZE [16] has a corresponding explanation.

4.3.4 Experiments on the Quadratic Regime of Decay

Atomic and nuclear transitions take place quickly, putting the times discussed
in this chapter out of reach of contemporary measurement for those systems.
In [10, 17] I estimated that for atomic transitions τJ ∼ 10−20 s. However,
there is a recent experiment [26] where the potential seen by the particles, in-
cluding a barrier, has a distance scale of a few hundred nanometers. This
experiment, a measurement of Landau–Zener tunneling, has (for us) two
benefits: the timescales are much longer and the potential can be quickly
modified.

The experiment [26] consists of putting ultracold Na atoms in oppos-
ing laser beams that have a relatively small frequency difference between
them. As a result the potential seen by each atom is time-dependent. Go-
ing into the atom’s accelerated frame, the potential can be written V =
V0 cos(2kLx) + aMx (“tilted washboard”), where a is the acceleration arising
from the frequency mismatch. Initially a small value of a is given to get rid of
atoms not caught in the potential, after which it is sharply increased, giving
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rise to the tunneling situation. It is then switched off in such a way that it
is possible to deduce what fraction of the atoms has escaped from the poten-
tial. For long times this quantity dies exponentially with a timescale of 70 μs.
However, for short times it is demonstrably not exponential – it begins with
what appears to be zero slope, tilts a bit, and then after roughly 5–10 μs goes
over to the exponential form.

In [27] I showed how one could get a back-of-the-envelope estimate of the
duration of this transient period. Recall that my derivation of the jump time,
τJ, was essentially a play-off of the quadratic and exponential time depen-
dencies (ignoring finer nuances of the decay curve). Hence it should provide
an estimate of the duration of the transient period in the experiment just
described.

To make this estimate it was not necessary to calculate either of the quan-
tities τZ or τL. Instead I appealed to the interpretation of τJ as inverse band-
width, (4.8). Which states are accessible to the atom in this potential? In
fact it is a periodic potential and the atom is initially in its lowest band. If
it were not for the tilt, the states in this band would be eigenstates of the
Hamiltonian. The tilt couples these states and makes the otherwise stable
states unstable. I thus take the band of accessible states to be just the band
of Bloch states. But the width of this band can be calculated from the period
of the potential and the mass of the atom. The bandwidth is just

Eb =
�

2K2

2M
, (4.19)

where M � 23Mp and the wave number is K = 1/94 nm [28]. We evaluate

τ
J

=
�

Eb
=

2M
�K2

� 6 μs . (4.20)

Comparing this to Figs. 3 or 4 in [26], it can be seen that the agreement is
excellent. In evaluating (4.20) there are many powers of 10, and I found it
remarkable that they condense to any reasonable result, much less one that
was close to the actual experiment [29].

Remark: The closeness of the evaluated time in (4.20) to the experimental
result should be considered fortuitous. My estimate depends on the wavelength
of the light and the mass of the particle. It does not explicitly depend on the
strength of the potential or on the rate of acceleration, features that are known
to affect the duration of the nonexponential decay.

4.4 Passage Time

4.4.1 Fleming’s Bound and the Ersak Equation

Given a Hamiltonian H and a state ψ, define U(t) ≡ exp[−i(H − Eψ)t/�],
with Eψ ≡ 〈ψ|H |ψ〉. We define a quantity related to what Fleming [12] calls
the integrity amplitude
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f(t) ≡ 〈ψ|U(t)|ψ〉 . (4.21)

Next, the function φt is defined to be that portion of the evolute that is
orthogonal to ψ,

U(t)|ψ〉 = f(t)|ψ〉 + |φt〉 , (4.22)

with 〈ψ|φt〉 = 0. Successive application of U(t) and U(t′) to ψ, followed by
left multiplication by ψ†, leads to

f(t + t′) = f(t)f(t′) + 〈ψ|U(t′)|φt〉 . (4.23)

Using the variable −t′, the adjoint of (4.22) is

〈ψ|U(t′) = 〈ψ|f∗(−t′) + φ−t′ . (4.24)

Multiply this equation on the right by |φt〉 to yield 〈ψ|U(t′)|φt〉 = 〈φ−t′ |φt〉.
When this is substituted in (4.23), we get

f(t + t′) = f(t′)f(t) + 〈φ−t′ |φt〉 . (4.25)

Fleming calls this the Ersak equation. Take the derivative of (4.25) with re-
spect to t′, set t′ to zero, and use the fact (from (4.21)) that ḟ(0) = 0 to
yield

ḟ(t) = −〈φ̇0|φt〉 . (4.26)

From the derivative of (4.22) it is clear that

〈φ̇0|φ̇0〉 =
1
�2

〈ψ|(H − Eψ)2|ψ〉 ≡ (ΔH)2

�2
. (4.27)

For convenience we write f ≡ g exp(iγ), with g real and nonnegative and γ
real. We apply the Schwarz inequality to (4.26):

|ḟ | ≤ ΔH

�

√
1 − g(t)2 . (4.28)

Using |ḟ |2 = ġ2 + γ̇2g2, we immediately have

|ġ| ≤ ΔH

�

√
1 − g2 . (4.29)

Finally, letting g ≡ cos θ provides a bound on θ̇, specifically, |θ̇| ≤ ΔH
�

. Since
g starts at 1, θ starts at 0, and it follows that

θ(t) ≤ ΔH

�
t . (4.30)

This gives our desired bound. Recalling the definition of g, it shows that no
state can become orthogonal to itself in less than π�/2ΔH . But this last
quantity is just πτZ/2, in our earlier notation.
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This result was derived by Fleming [12] and leads us to define the passage
time, τP ≡ πτZ/2.

To confirm that the bound can in fact be attained, let H = α2σx (σ =
Pauli spin matrices) and ψ = |+〉. Then τZ = �/α, and the system turns
over in πτZ/2. This example, however, does not clarify the relations among
the many times that have been defined in this article. Because there is no
exponential decay in this case, τL is not clearly defined. If one takes it to be
the time to first extinction, then τZ, τL, τP, and τJ are all essentially the same.

The example of the last paragraph is realized in a real-world system: chi-
ral molecules that can exist in two reflection-related isomers. In practice those
molecules for which the transition time between isomers is anything but micro-
scopic appear as one or the other isomer, never the symmetric superposition
that is the system’s true ground state. This and similar phenomena have been
attributed [30, 31] to a manifestation of the QZE. The idea is that merely
by virtue of being in solution the molecules are constantly buffeted about
and “observed,” or decohered. The timescale for this is the inverse of the en-
ergy split between the theoretical symmetric and asymmetric states of the
isomers, which is expected to be extremely long (hence the decay is subject
to interruptions on the timescale of collisions in solution). But as remarked
in the last paragraph, this situation does not distinguish among the various
characteristic times, since all are the same.

4.4.2 Implications of the Bound in Measurements

As just shown, no quantum system, under unitary evolution alone, can become
orthogonal to itself in less than τP, where τP is, up to a trivial factor, what we
have called τZ. In particular, for a given state, ψ, and given Hamiltonian, H ,

τP =
πτZ

2
=

π

2
�√

〈ψ|(H − Eψ)2|ψ〉
. (4.31)

Moreover, we showed that for at least one system, possessing only two levels,
the bound is actually attained.

In general measurements, however, the Fleming bound may have little
to do with the time the system needs to complete its transition. Thus the
Landau–Zener tunneling experiment shows transitions within the first mi-
crosecond, although the jump time is ∼ 5 μs. In this case, since the measured
τL is ∼ 70 μs, the Zeno time would presumably be the algebraic mean, ∼ 20 μs.
There is no doubt, from the inspection of the data, that many transitions occur
well before τP. How can that be?

The answer is that proper use of the bound requires that the Hamilto-
nian of the measurement apparatus be included in the “H” of Sect. 4.4.1.
In general this can involve enormous energies, much larger than those of the
system measured (were it in isolation). Thus, for the full system, τ full

Z may be
extremely short, in particular shorter than even τJ of the isolated system. In
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the tunneling experiment [26], one has a time-dependent Hamiltonian, reflect-
ing the fact that controlling the value of the acceleration, a, as a function of
time, is an important part of the successful performance of that experiment.
Thus during the time that the crossed beams are turned on at their maxi-
mum a, the wave function of the atom in the tunneling experiment is partly
in the well, partly in the barrier, partly outside. The sudden change in the
confining potential means that the apparatus is interacting directly with the
system, leading to a large energy spread. This remark is related to the story
told to students when they first encounter barrier penetration: if you check
whether the particle “really” is in the barrier, you would introduce enough
energy to overcome that barrier. (A change in τZ due to measurement was
also seen in [25], but there the “apparatus” coupling stops the decay rather
than facilitates it.)

What I now show is that for some kinds of measurement the Fleming
bound provides direct physical information. Moreover, serious attention to
this bound can provide an experimental test for my own theory of what takes
place in a quantum measurement [32].

We again consider the “apparatus” of Sect. 4.3.3. The Hamiltonian is

H =

⎛

⎝
0 Φ† 0
Φ ω Θ†

0 Θ W

⎞

⎠ , (4.32)

where H is a (1+N+M)×(1+N+M)-dimensional matrix; N is the dimension
of the diagonal matrix ω; and M (� N) the dimension of the diagonal matrix
W . The states of the system are of the form ψ† = (x∗, y†, z†), x ∈ C, y ∈ CN

and z ∈ CM . The physical scenario is this. The normalized state ψ with
x = 1 represents an undecayed atom; call its level #1. It is coupled, perhaps
electromagnetically, to states with y �= 0, z = 0, via the coupling terms Φ.
The “y” states represent the atom in its decayed state (call it #2) plus one
or more photons. Now it may happen that the atom can continue its decay
to a third level, or perhaps by varying an external field that decay can be
encouraged. Let the atom in that third level plus all emitted photons (from
both steps) correspond to the various “z” levels. As in Sect. 4.3.3, this second
transition involves considerable decoherence and provides the irreversibility
and amplification characteristic of the measurement process. Thus the way
the rest of the world knows that the system has decayed from level 1 to
level 2 is realized through the coupling, Θ, and the states with z �= 0.

The important point is that for this kind of apparatus–system coupling,
there is no change in τZ. It is still �/

√
Φ†Φ. The key is that the measurement

works by coupling to the decay products, not to the original state [33], thus
leaving τZ and τP unchanged. For such measurements, the Fleming bound
does not allow the state to be completely out of its original level, nor to be
completely in any other, for t < τP.
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4.5 Experimental Discrimination among Quantum
Measurement Theories and “Special States”

4.5.1 Testing the Foundations

Suppose you had an apparatus of the type described in Sect. 4.4.2, i.e., one
that couples only to decay products (cf. (4.32)). If this were a system for
which τZ is known, then one could say with confidence that unitary evolution
alone cannot bring the wave function entirely to the decay states before τP.
What are the implications of this according to the Copenhagen interpretation
of quantum mechanics? Answer: none. You can still (for t < τP) measure
the system to be in the decayed state (presumably, using this measurement
apparatus), and as usual the probability of doing so would be the absolute
value squared of the amplitude in the decayed state – no need for this to be
unity, just strictly positive.

By contrast, according to the explanation for the definiteness of quantum
measurements that I have proposed [32], you would only get a definite mea-
surement of the decay when the entire wave function has entered the Hilbert
space of decayed states. I will not review these ideas here, and refer the reader
either to the indicated book or, for a less complete version, to [34].

This allows an explicit experimental test of my theory. A system is put
in an unstable state and then shielded from the environment, except for an
apparatus monitoring its state indirectly, i.e., by checking for decay products.
For this system (for which I do not have a specific physical proposal yet)
you would need to calculate or bound τP. I then predict no decays before τP,
whereas the Copenhagen interpretation imposes no such ban (despite some
relative reduction if the system is still in the quadratic decay regime).

Although complete blocking of the environment can be difficult (cf. [32]),
the quest for quantum computers has in recent years developed experimental
tools for just this goal. I look forward to exploring this further.

4.5.2 Special States for Decay

The motivation for this subsection is explained in [32]. Briefly, in Sect. 4.5.1
I indicated that according to my ideas no decay could take place until t ≥ τP.
But what if t = 2τP? Would the system then decay, i.e., exit completely from
the state x = 1, as my theory requires? From the Hamiltonian (4.32) it does
not look that way. For moderate Θ (hence τR) one gets the usual exponential
decay: on a scale of τL the wave function gradually passes out of its initial state.
Since, generally, τL � τP this implies that at 2τP most of the wave function
is still in the undecayed state. My explanation for the manifest observations
of decay at short times (but > τP) is that there are special states of the
environment for which the decay does go to completion, despite the fact that
for the vast majority of environmental states this does not happen. Why
Nature chooses these “special” states is discussed in [32]. What I wish to show
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in the present article is a special state for decay in the model Hamiltonian
(4.32), or in something close to it.

The physical environment is not represented in (4.32). The main environ-
mental richness is in the initial state of the ambient photon field when the
atom is still in its level-1, undecayed state. But this requires a cross product
of available photon states with the (1 + N + M)-dimensional Hilbert space
I have heretofore considered. Instead of this, I will simplify by incorporating
the field-initial-condition information in Θ itself. This quantity, in the rotat-
ing wave approximation, is of the form Θ =

∑
k |3〉〈2|a

†
k, with a†k the photon

creation operator. (Multiple photon creation is also allowed.) If the field of
preexisting photons (before the decay) is well occupied, both ak and a†k can
be approximated by

√
nk, with nk the occupation number of the kth photon

mode. This means that the features of the environment appear as particular
values of the components of Θ.

I have already presented something like this in [35]. I assumed that the
environment fluctuates near the atom, effectively modifying Φ. With a partic-
ular Φ(t) the decay is complete by τP. However, this demonstration required
beliefs about what the field could accomplish, beliefs that I did not explicitly
justify.

I will show next that with a purely fixed set of interactions (Θ and Φ) the
system will rapidly go completely over to an orthogonal state. The demon-
stration will not quite produce a state that makes it in τP, just

√
2 times that,

but this establishes the main point.
With this in mind we break the subspace {(0, 0, z)} (z �= 0) into two pieces.

One piece consists of a particular set of N levels (one for each dimension in
the space {(0, y†, 0)} with y �= 0). We assume that each of these has the
same energy as one of the “y” levels. (Recall this is the total energy, atom
plus photons, so these levels correspond to the atom dropping to level-3 and
emitting a photon of just the 2–3 energy difference, of which there are many.)
At the same time, we assume that the occupation numbers of those levels in
the ambient field are just such as to make the coupling to the “y” level with
energy ωk equal to that same ωk. The coupling of the remaining degrees of
freedom I call Θ̃, and the energies W̃ . The Hamiltonian and the wave function
take the form

H =

⎛

⎜⎝

0 Φ† 0 0
Φ ω ω Θ̃†

0 ω ω 0
0 Θ̃ 0 W̃

⎞

⎟⎠ , ψ =

⎛

⎜⎝

x
y
ζ
z̃

⎞

⎟⎠ . (4.33)

Now when most matrix elements of Θ are moderate, the passage out of the
initial Hilbert subspace of undecayed atomic states is slow, on the order of
τL. If it can be demonstrated that by using only the restriction of H to its
first 2N + 1 dimensions one can get decay in a time on the order of τP,
then the remaining couplings and levels (Θ̃, etc.) will be negligible on that
timescale. Therefore I restrict attention to the first 2N + 1 levels and study
the Hamiltonian and states
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Ĥ =

⎛

⎝
0 Φ† 0
Φ ω ω
0 ω ω

⎞

⎠ , ψ =

⎛

⎝
x
y
ζ

⎞

⎠ . (4.34)

Two approaches will be used to analyze the dynamics. First give ψ an
overall dependence exp(−iEt) (with � = 1). By the same manipulations that
led to (4.14), E is found to satisfy

E = Φ† E − ω

E2 − 2ωE
Φ =

1
2

{
1

Eτ2
Z

+ Φ† 1
E − 2ω

Φ

}
. (4.35)

As in (4.15), this becomes

E2 =
1

2τ2
Z

+
E

2

(
ΔE − i

4
Γ

)
. (4.36)

(The denominator “4” for Γ arises from the 2ω in (4.35).) Generally both ΔE
and Γ (which is the usual decay rate) are much smaller than 1/τZ, so that to
a good approximation

E ≈ 1√
2τZ

− i

16
Γ (4.37)

(where ΔE is ignored). This implies that with the initial condition x = 1 the
behavior of x will be cos(t/

√
2τZ) to a very good approximation. This in turn

implies that x will hit zero when t = (π/2)τZ

√
2. That value differs by a factor√

2 from the optimum defined by Fleming’s bound. The point though is that
with a bit of manipulation of the environment the decay has been speeded up
from a scale of τL to one of τP. (If the coupling, ω, in Ĥ is changed to αω and
the ζ energies set to α2ω, then the time for reaching orthogonality becomes
τP(1 + 1/α2)1/2, which can be made closer to τP by increasing α.)

This result can also be obtained by looking at the time-dependent equa-
tions generated by the Hamiltonian of (4.34). They are

iẋ = Φ†y , iẏ = Φx + ω(y + ζ) , iζ̇ = ω(y + ζ) . (4.38)

Add and subtract the second and third equations, integrate the equation for
the difference, substitute back for y, and finally take the derivative with re-
spect to t to obtain

ẍ(t) +
1

2τ2
Z

x(t) = −1
2

∂

∂t

∫ t

0

Φ†e−2iω(t−s)Φx(s) ds . (4.39)

Define K(u) ≡ Φ† exp(−iωu)Φ. This is an important kernel for studying decay
properties. Thus for unobserved decay (4.11) implies ẋ = −

∫ t
0
K(u)x(t−u) du.

Although the possibilities for K’s behavior are wide, for moderate times it typ-
ically drops rapidly, so that a reasonable approximation is K(u) ≈ (Γ/2)δ(u).
The normalization can be checked by plugging into the equation just written
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for ẋ. In (4.39) we have K(2u), so that with the δ-function approximation we
obtain

ẍ(t) +
Γ

8
ẋ +

1
2τ2

Z

x(t) = 0 . (4.40)

For times less than τJ the δ-function approximation is not applicable, but the
Zeno time is generally much longer and is the scale now considered. With
initial conditions x(0) = 1, ẋ = 0 (from (4.38)) it follows that, to lowest order
in Γ ,

x(t) = cos(t/
√

2τZ)e−Γt/16 , (4.41)

which agrees with our previous result. An amusing perspective on the early
vanishing of x is as the ultimate anti-QZE [16].

To further confirm that the approximations work, I have included Fig. 4.1.
This is a numerical calculation of a decay that, in the absence of apparatus-
induced “specializing” effects, would show normal exponential decay. For this
calculation it is assumed that the coupling enhancement in the apparatus
arising from the extra photons in the particular modes k (the extra factors
“
√
nk” mentioned earlier) only lasts for a period τP, after which the coupling

returns to normal.
This time dependence of Θ illustrates the fact that the “specialness” of

the microscopic state includes timing. The added coupling due to the ambient
field is indeed ambient and once the transition is complete things return to
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Fig. 4.1. Survival probability as a function of time, linear, and log plots. The solid
line represents decay under the influence of the (matched photon) apparatus. The
dashed line is ordinary decay, with no apparatus, and on the log plot shows appro-
priate linear decline. (In this system τZ ≈ 48 and a fit gives τL ≈ 393 yielding τJ ≈ 6,
which is too small for a deviation to be seen in this figure.) These are computer cal-
culations of the survival probability with the Hamiltonians (4.10) and (4.34) (with
transient coupling, as described in the text). From the analytic calculations, pas-
sage time should be

√
2τP ≈ 106, and as is evident the decay in the presence of the

apparatus hits zero at a time close to this. The dashed curve, representing normal
decay, is far from zero at this time. In this calculation N = 101, and continuation
of the curve would eventually show quantum Poincaré recurrence
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normal. If the reader is encountering my ideas for the first time and finds the
choreography excessive, please be assured that the appearance of “unlikely”
microscopic states has been addressed extensively. What is likely or unlikely
is related to the thermodynamic arrow of time, and it is by exploring related
foundational questions of statistical mechanics that I am able to argue for the
plausibility of these ideas. If this has piqued your interest, see [32].

Remark: The states just exhibited are special states for quantum jumps.
Another example, in which the environment plays an even more explicit role,
is [36].

4.6 Discussion

Under the unitary evolution given by the formal mathematical structure of
quantum mechanics, systems move gradually from state to state. For exam-
ple, an unstable atom still has amplitude in its original state after many of
its lifetimes. But in practice, which is to say in the lab, they go from being in
one state to being in the other, seemingly instantaneously. This is the “quan-
tum jump.” Experiments that saw single-atom transitions [7, 8, 9] appear to
confirm this perception. In the measurements, the system went from state to
state in a time beneath the discrimination of the observers, whereas when the
times spent in the unstable state were averaged, they recovered the lifetime
of the atom.

The problem studied in this chapter is whether the “quantum jump” is
indeed instantaneous or whether it could be assigned a duration, in theory and
in experiment. The longstanding problem of tunneling time, in connection
with barrier penetration, sets a precedent and is a guide. If that tunneling
represents a process necessary for decay, then surely the associated time is a
candidate (or a lower bound) for the duration of the transition.

Two characteristic times are defined here, jump time (τJ) and passage
time (τP). In general they are quantitatively different and it is the richness
of quantum mechanics, as well as lingering questions about its interpretation,
that allow two answers to what would be a well-defined question classically.

Both times use the Zeno time, τZ, defined in terms of the Hamiltonian of
the system and its initial state as

τZ ≡ �

/√
〈ψ|(H − Eψ)2|ψ〉 with Eψ ≡ 〈ψ|H |ψ〉 . (4.42)

The jump time, τJ, takes what I consider to be a more traditional view
and is defined in terms of the timescale needed to slow (à la the quantum
Zeno effect) the decay. A “measurement” is an idealized projection leading to

τJ ≡ τ2
Z /τL . (4.43)

This time shows up in several contexts. It is related to tunneling time [14], for
those transitions where a physical barrier can be identified. Its inverse is the
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bandwidth of the Hamiltonian, in a kind of time–energy uncertainty principle
that governs the ability of the system to change state. τJ is also an indicator
of the duration of the quadratic decay regime in both experiment [26] and in
numerical calculations. (An illustration of the latter is Fig. 2 of [24].)

The jump time, τJ , is motivated by considerations of the QZE. The usual
formulation of that effect is in terms of pulsed measurements, say at (pulse)
intervals τPM . One is then faced by the fact that apparently continuous mea-
surements do allow decay. We resolve that paradox with a purely quantum
calculation (no measurement theory “black magic”) in which it is shown that
the measurement apparatus response time; say τR, plays the role of pulse
time, and for short enough τR observation will indeed inhibit decay. We ob-
tain the relation τPM = 4τR [24], a relation that has recently been confirmed
experimentally [48].

The passage time, τP, arises from pure unitary evolution alone, sans inter-
pretive steps. It is based on a bound [12] that shows that for any H and ψ
the system cannot evolve to a state orthogonal to ψ in time less than τP, with

τP = πτZ/2 . (4.44)

If you think of H as the Hamiltonian of the system alone, then it would appear
that this bound has little to do with measurements. The “instantaneous” jump
occurs outside the realm of unitary evolution (so they say) and could certainly
happen faster than τP.

But I want to consider H to be the Hamiltonian of the system and the
measuring apparatus. This is a view I have advocated for quite some time
[37, 38, 34] and is the perspective taken by the many-worlds and decoherence
interpretations of quantum mechanics.

But even among those who accept this view, there is still no consensus
about the implication of τP for an actual measurement. In my theory [32] this
bound implies that the apparatus could not detect a transition in less than
τP, making this the ultimate transition time. (And in the present article an
example was given of a special state that did manage the transition in close to
τP.) Of course, one can still have detection in times less than the τP you would
calculate using the system Hamiltonian alone, since the full passage time of
system plus apparatus, τ full

Z , is in general much shorter than the restricted one.
Finally, there is a particular kind of detection in which the presence of the

apparatus does not change the passage time. This provides the possibility of
an experimental test of my measurement theory. One of my current goals is
to find a practical experimental setup in which this test can be made.
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to Timing Electrons
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5.1 Introduction

The timing of quantum events and of the duration of quantum processes is an
area of quantum theory that has been quite active for more than two decades.
Despite much effort by many people using a wide-ranging variety of approaches
based on conventional quantum mechanics, there are still controversial issues
to be resolved and considerable work remaining to be done. Even the extent to
which this is true is controversial. In the first edition of this book, Egusquiza,
Muga, and Baute [1] concluded “the long prevalent view that there is no
place for ideal time observables has been superseded” and “we do have the
(admitted elementary) tools for dealing with the simplest ones without in any
way distorting the standard framework of quantum mechanics.” This contrasts
with the recent statement of Dürr, Goldstein, and Zangh̀ı [2] that “Time
measurements ... are particularly embarrassing for the quantum formalism.”
Faced with such strong differences of opinion, it seems worthwhile to heed
the advice of David Bohm that “there should be a kind of dialogue between
different interpretations”[3]. This chapter was written with this attitude in
mind. Arrival time at a spatial point – a simple example of an event time
– and dwell, transmission, and reflection times for a finite spatial region –
simple examples of time durations – are analyzed for Dirac and Schrödinger
electrons using the “Bohm trajectory approach,” i.e. within the framework of
de Broglie’s and Bohm’s [2, 3, 4, 5, 6, 7, 8, 9] causal alternative to quantum
mechanics. Then several approaches to timing quantum particles based on the
conventional theory are discussed from this point of view.

The use of a trajectory approach to timing quantum particles is motivated
in Sect. 5.2. In Sect. 5.3 the essentials of Bohm’s ontological interpretation of
quantum theory are sketched and then applied to timing electrons. Some con-
ventional approaches are discussed from the perspective of Bohmian mechan-
ics in Sect. 5.4. Spin-dependent arrival-time distributions for nonrelativistic
electrons are considered in Sect. 5.5. A recent claim based on a gedanken
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protective measurement that Bohm trajectories are not real is addressed in
Sect. 5.6. Concluding comments are made in Sect. 5.7.

5.2 Motivation for Using a Trajectory Approach

For an ensemble of quantum particles prepared in the initial state ψ0(x) ≡
ψ(x, t = 0), theoretical expressions [10, 11, 12, 13, 14, 15, 16] for the intrinsic
(or ideal) distribution Π(T ;X ;ψ0) of their arrival times T at x = X are usu-
ally written – for those that do arrive – as the sum of two terms Π+(T ;X ;ψ0)
and Π−(T ;X ;ψ0), corresponding to arrivals from the left and from the right,
respectively, with no left–right interference term. Think classically for the mo-
ment so that the possibility of such an interference term is not an issue, to say
that a point particle arrives at x = X at the time t = T from the left (right)
means that the particle is located at x = X at t = T and that it was in the
region x < X (x > X) at all times t in the interval T −Δt ≤ t < T for some
nonzero Δt. This concept is a simple, clear, and meaningful one for a particle
that moves along a continuous trajectory with a well-defined finite velocity
at each instant of time. Returning to the quantum case, one can attempt to
maintain this simplicity and clarity by adopting an approach involving contin-
uous particle trajectories, either “virtual” or “real,” and using a relativistic
wave equation to avoid infinite velocities. For the special case of electrons,
considered here, at least two such approaches come to mind. One is based on
Feynman’s path integral derivation [17] of the 1 + 1 dimensional free-electron
Dirac equation using a “checkerboard” model in which particles move along
zigzag paths in space–time always at the vacuum speed of light c. It has re-
cently been shown [18] that, when the finite correlation length for reversals
of direction discovered by Jacobson and Schulman [19] is taken into account,
this model leads to an arrival-time distribution for free motion in 1 + 1 di-
mensions with no left–right interference term. The results for Π+(T ;X) and
Π−(T ;X) are identical to those presented without derivation or discussion
over 30 years ago by Wigner [20].1 In another approach that comes to mind,
the trajectory method based on the causal version of the de Broglie–Bohm
ontological interpretation of relativistic quantum mechanics [3, 7, 8], the par-
ticle speed associated with a Dirac electron cannot exceed c and there is no
left–right interference term in Π(T ;X). Both approaches are simple and clear
but whether or not they are physically meaningful is open for discussion, par-
ticularly since the two arrival-time distributions are not identical. The first
approach is based on the implicit assumption that the arrival-time distribu-
tion calculated using the virtual paths of the checkerboard model is identical
to that for actual electrons, and the second approach is based on the explicit
postulate that Bohm trajectories are real. It is the latter approach – the Bohm
trajectory approach– as applied to electrons, that is the primary focus of this

1 Wigner’s expression for Π± is not restricted to the special case of free evolution.
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chapter. This is developed in Sect. 5.3 after a quick review of the relevant
essentials of Bohm’s causal interpretation of quantum theory.

5.3 Bohm’s Ontological Interpretation
of Quantum Theory

5.3.1 Brief Introduction

Much of the work on characteristic times for quantum particles in terms of
(assumed) real trajectories, as opposed to virtual paths such as Feynman’s, has
been carried out within the framework of Bohm’s ontological interpretation of
quantum mechanics [2, 3, 4, 5, 6, 7, 8, 9]. In the causal version of the theory,
tailored to the single-particle problem of interest here, it is postulated that
an electron propagating in a potential V (r, t) is an actual point-like particle
and an accompanying wave ψ(r, t), which probes the potential and guides the
particle’s motion accordingly so that it has a deterministically well-defined
position r(t) and velocity v(t) at each instant of time t. It is also postulated
that the particle’s equation of motion is

v(t) ≡ dr(t)/dt = v(r, t)r=r(t) =
J(r, t)
ρ(r, t)

∣∣∣∣∣
r=r(t)

. (5.1)

For a Dirac electron (see Appendix)

ρ(r, t) ≡ ψ†(r, t) ψ(r, t) ,J(r, t) ≡ cψ†(r, t) α̂ψ(r, t) , (5.2)

where the four-component guiding field ψ(r, t) is the appropriate solution
of Dirac’s relativistic wave equation and cα̂ is the Dirac velocity operator.2

We are using the minimal approach of Bell [2, 6] in which the dynamical
properties of an electron usually associated with spin follow solely from the
assumption that the spatial motion of the point-like particle is guided by a
multicomponent wave function. In particular, there is no assumption of a me-
chanical spin somehow associated with the particle. We are also assuming that
there is a very low energy regime for which Dirac’s original interpretation of
ρ(r, t) and J(r, t) as single-particle probability and probability current densi-
ties, respectively, provides an adequate approximation to reality. In any case,
the relativistic velocity defined by (5.1) and (5.2), regardless of its physical
meaning, cannot exceed the vacuum speed of light c in absolute value [3, 7].

2 The local expectation value of a property represented by an operator Ô is de-
fined to be Re[ψ†(r, t)Ôψ(r, t)]/ψ†(r, t)ψ(r, t) [7]. Although the particle veloc-
ity v(r, t) in (5.1) is identical to the local expectation value of the velocity
operator cα̂, the relevant expression for the square of the particle velocity is
{[ψ†(r, t)cα̂ψ(r, t)]/ψ†(r, t)ψ(r, t)}2 ≤ c2 rather than the local expectation value
Re[ψ†(r, t) (cα̂)2 ψ(r, t)]/ψ†(r, t)ψ(r, t) = 3c2. (See Appendix.)
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The equation v(r, t) = J(r, t)/ρ(r, t) for the velocity field and (5.7)–(5.24)
below have also been applied to Schrödinger electrons using the standard
nonrelativistic expressions

ρ(r, t) = ψ∗(r, t)ψ(r, t) , J(r, t) = (�/m) Im[ψ∗(r, t)∇ψ(r, t)] , (5.3)

where the guiding field ψ(r, t) is the appropriate solution of the t-dependent
Schrödinger equation. The resulting equation of motion is the simplest that
is Galilean and time-reversal invariant [9], but for systems with more than
one spatial dimension the probability current and hence the particle equation
of motion (5.1) are not uniquely defined within nonrelativistic quantum me-
chanics [21, 22]. However, Holland [23] has recently shown that the probability
current density deduced from the continuity equation is uniquely defined for
Dirac electrons when Lorentz covariance is imposed and indeed given by the
standard result cψ†(r, t)α̂ψ(r, t). In addition, he emphasized that its nonrela-
tivistic limit for a spin eigenstate in zero magnetic field is not just the standard
Schrödinger result but contains a spin-dependent term

J(r, t; ŝ) = (�/m){Im[ψ∗(r, t)∇ψ(r, t)] + Re[ψ∗(r, t)∇ψ(r, t)]× ŝ}, (5.4)

where
s ≡ (�/2) ŝ ≡ (�/2) χ†σ̂χ (5.5)

is the spin vector associated with the spin eigenstate χ, a two-component
spinor normalized to unity (χ†χ = 1). The nonrelativistic particle is, in ef-
fect, guided by the two-component wave function ψ(r, t; ŝ ) ≡ ψ(r, t) χ and
the original expression for the nonrelativistic velocity field should then be
replaced by

v(r, t; ŝ ) ≡ J(r, t; ŝ )/|ψ(r, t)|2 . (5.6)

Hence, (5.1) and (5.7)–(5.24) apply to Schrödinger electrons only when the
spin-dependent term in the nonrelativistic probability current density is ei-
ther zero or negligible. Section 5.5 considers some situations in which this
term is important. Since the publication of the first edition of this book, Ali,
Majumdar, Home, and Sengupta [24] have generalized Holland’s uniqueness
result so that it applies to the quantum particles described by any consistent
relativistic wave equation.

Given the initial wave function ψ(r, 0) and particle position r (0) ≡ r(0),
the subsequent motion is uniquely determined by integration of the time-
evolution equation for ψ(r, t) and the equation of motion (5.1) for r(t) to
obtain the particle trajectory r(r (0), t). A very useful property of these tra-
jectories follows directly from the fact that the equation of motion is first order
in time: trajectories with different r (0), but the same ψ(r, 0), do not intersect
(or even touch) each other – if r

(0)
1 �= r

(0)
2 then r(r (0)

1 , t) �= r(r (0)
2 , t) for any t.

In Bohm’s ontological interpretation ρ(r, t) dr is, for an ensemble of
identically prepared electrons, interpreted as the probability of the parti-
cle component of the electron being in the volume element dr at time t.



5 Bohm Trajectory Approach 133

This is postulated only for the initial time t = 0, the continuity equation
∂ρ/∂t + ∇ · J = 0 and the equation of motion (5.1) together guaranteeing
that it is then true for all subsequent times. This realistic, “being” rather than
“being found,” interpretation is not based on the concept of “measurement.”
Hence, the internal consistency of Bohm’s theory – in contrast to conventional
quantum theory – does not necessitate that it be possible (in principle at least)
to find the single electron of interest at time t in some infinitesimal volume
dr and thereby localize its wave function within dr. This is problematic in
the case of Dirac electrons where attempting such confinement can generate
particle–antiparticle pairs. Within Bohmian mechanics there is, at least in
principle, a simple way around this difficulty if both the initial state ψ(r, 0)
and the potential V (r, t) are known to sufficient accuracy. Considering the 1D
case for simplicity, suppose that one wants to know the position of the particle
component of an electron at a specific time t′ to an accuracy δx that is not
very much larger than the Compton wavelength λc ≡ �/mc so that one needs
to worry about the disruptive effect of particle–antiparticle creation and anni-
hilation processes induced during the attempted measurement. A solution is
to wait until a time t′′ at which the wave packet has spread by a factor F that
is sufficiently large so that a coarse position measurement with a spatial reso-
lution of Fδx is not a problem in this regard. One measures the particle’s po-
sition at time t′′ and finds that it is within a particular interval of width Fδx.
Using the nonintersecting property of Bohm trajectories one calculates the two
trajectories that go through the endpoints of that interval at time t′′, backward
in time to t′, to retrodict the endpoints of the much smaller interval, of width
O(δx), in which, according to the theory, the particle was located at time t′.

Despite the radical departure of Bohm’s theory from the conventional one,
for the standard impulsive “measurement” of any system observable at an in-
stant of time chosen by the experimentalist, it predicts precisely the same
statistical distribution of apparatus pointer positions.3 Moreover, for the im-
portant case of a strong, projective measurement it provides a resolution of
the measurement problem: because of decoherence there is an effective but
not actual collapse of the entangled system-apparatus wave function to the
eigenstate component(s) selected by the actual positions of point-like particles
– the other components, although still existing, play no further role in guiding
the particles. The arrival time is not in the above class of quantities: typically,
the experimentalist chooses the plane x = X , not the time T , of arrival [25].
Hence, it is not a foregone conclusion that the distribution of particle arrival
times predicted by the two theories will be identical.

In Bohm’s causal theory, uncertainty enters only through the probability
distribution ρ(r = r (0), t = 0) for the unknown initial position r (0) of the
particle. There is no explicit reference to initial momentum p (0) because it
is uniquely specified by r (0) for a given initial wave function ψ(r, 0) and

3 The interpretation of pointer positions in terms of what they reveal about the
microscopic system – if anything – can be very different however.
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potential V (r, t). Other than this, calculation of the statistical properties of a
particle proceeds in much the same way as in classical statistical mechanics.
For example, the probability distribution for some particle property f , which
is defined for all trajectories, is given by

Π(f) ≡
∫

all space

dr (0) ρ(r (0), 0) δ[f − f(r (0))] , (5.7)

where f(r (0)) is the value of the property for a particle following the trajectory
r(r (0), t). (For particle properties that are not defined for some trajectories
it is necessary to restrict the range of integration in (5.7) to exclude those
trajectories and to normalize the resulting distribution accordingly.) A good
example is the distribution of first-exit times from a 3D region bounded by
a surface S and the distribution of the corresponding exit positions on S.
This is one of the problems considered by Daumer and collaborators [26]
who applied Bohmian mechanics to the scattering of a quantum particle in
3D. They identified |J(r, t) · dS(r)| with the (unnormalized) distribution of
particle crossing times through the surface element dS(r) and also constructed
a rigorous proof of the free flux-across-surfaces theorem, which is fundamental
to a convincing derivation of the standard expression for the differential cross
section [27]. In Sect. 5.3.2 we consider the simpler problem of deriving the
arrival-time distribution for the 1D case.

5.3.2 Derivation of a General 1D Intrinsic
Arrival-Time Distribution

In Bohmian mechanics wave/particle duality means that a single electron is at
all times both a point-like particle and a guiding wave. In the Bohm trajectory
approach to timing electrons it is only the particle component of the electron
that is being clocked. Because the particle is point-like and has a well-defined
continuous trajectory it is straightforward to define and derive an expression
for Π(T ;X). If the arrival-time detector is not included in the Hamiltonian,
as is the case here, then this is an expression for the intrinsic arrival-time
distribution. In 1D the derivation [28] is greatly simplified when one takes into
account the nonintersecting property of the trajectories. This means that only
a single distinct Bohm trajectory contributes to the probability current density
J(x, t) and determines its sign at any particular space–time point (x, t). This
is completely different from the situation for classical ensembles where the flux
J(x, t) can have contributions from a variety of distinct trajectories passing
simultaneously through x at time t, from either the same or both directions.

Consider the complete set of starting points x(0) for each of which the
associated trajectory x(x(0), t) reaches x = X at least once at some time(s)
subsequent to t = 0. Because the trajectories do not cross or touch each other,
this set must consist of a single continuous interval, say [x(0)

a , x
(0)
b ]. Again

because of the nonintersecting property, there is one and only one value of
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x(0) in the range [x(0)
a , x

(0)
b ] for which the trajectory x(x(0), t) reaches X at a

particular value of T within the support of Π(T ;X). Even if that trajectory
reaches X more than once, only one of its arrival times, say T (x(0)), is equal to
the specified value of T . Hence, the (unnormalized) arrival-time distribution is

∫ x
(0)
b

x
(0)
a

dx(0) ρ(x(0), 0) δ[T − T (x(0))] . (5.8)

Now,

δ[x(x(0), t) −X ]|t=T =
δ[t− T (x(0))]
|dx(x(0), t)/dt|

∣∣∣∣∣
t=T

=
δ[t− T (x(0))]
|v[x(x(0), t), t]|

∣∣∣∣∣
t=T

(5.9)

contains only a single term and (5.8) becomes

|v(X,T )|
∫ x

(0)
b

x
(0)
a

dx(0) ρ(x(0), 0) δ[x(x(0), T )−X ] . (5.10)

The integral is just the probability density ρ(X,T ) and (5.10) reduces to

|v(X,T )| ρ(X,T ) = |J(X,T )| , (5.11)

using (5.1). Normalization then gives

Π(T ;X) =
|J(X,T )|∫∞

0 dt |J(X, t)|
(5.12)

for the probability distribution of arrival times for those particles that actually
reach X subsequent to t = 0. This is not defined if the denominator is zero,
i.e. no particle in the ensemble ever reaches X subsequent to t = 0. Nor it is
defined if the denominator is infinite as, for example, would be the case for
periodic motion of a set of trajectories back and forth through x = X forever
[29]. In the latter case, the arrival-time density |J(X,T )| is still of interest,
even though it is not normalizable.

In general the distribution should be supplemented with a number giving
the fraction of particles in the ensemble that reach X at least once.

It follows from (5.1) for the velocity field v(x, t) that J(X,T ) > 0 cor-
responds to a particle arriving at x = X at t = T from the left (+) and
J(X,T ) < 0 corresponds to a particle arriving at X at time T from the right
(−). Hence, (5.12) can be rewritten as

Π(T ;X) = Π+(T ;X) + Π−(T ;X) (5.13)

with

Π±(T ;X) = ±J±(X,T )
/∫ ∞

0

dt [J+(X, t) − J−(X, t)] ≥ 0 , (5.14)
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where
J±(x, t) = J(x, t) Θ[±J(x, t)] . (5.15)

It should be noted that although (5.13) and (5.14) also hold for classical
particles, the decomposition (5.15), as a general result valid for any ensemble
of particles and for any potential, is peculiar to Bohmian mechanics. Wigner’s
results for Π±(T ;X) are given by (5.14) with

J±(x, t) = JW± (x, t) ≡ (1/2)[J(x, t) ± cρ(x, t)] . (5.16)

Substituting (5.16) into (5.13) gives

Π(T ;X) = ΠW (T ;X) ≡ ρ(X,T )/
∫ ∞

0

dt ρ(X, t) (5.17)

which is identical to the so-called “time-of-presence” distribution [30].
The arrival-time distribution (5.12) can also be readily decomposed into

contributions from first, second, third, etc. arrivals using efficient numerical
methods based on the nonintersecting property of the trajectories [31, 32]. For
a few examples of calculated intrinsic arrival-time distributions, see [33, 28].

Grübl and Rheinberger [29] have applied Bohmian mechanics to the prob-
lem of calculating measured as opposed to intrinsic arrival-time distributions.
They did, however, use the simplifying assumption that the presence of the
detector does not significantly perturb the Bohm trajectories of the particles
of interest. Regarding (5.12) for the intrinsic arrival-time probability distribu-
tion they said the following: “If one assumes that the detector clicks each time
it intersects with the particle’s Bohmian trajectory,” (5.12) “indeed yields the
probability density of clicks. This seems to be a reasonable idealization if the
detector is active during a short time interval.” This time interval is presum-
ably so short that the probability of it spanning two arrivals for a single Bohm
trajectory is negligible relative to that for a single arrival. This idealization
also involves the active volume of the detector being sufficiently well localized
about x = X . They then formulated a “detection probability for detectors
sensitive to quite arbitrary space–time domains” paying special attention to
the very different and more practical situation in which the detector, activated
at t = 0, remains active until and only until the detection of the first arrival
of the particle. Calculated detection probabilities for various case studies are
presented in [29, 34].

Nogami, Toyama, and van Dijk [35] recently used Bohmian mechanics
to provide a pictorial representation of various interesting features, such as
multiple exits, of the escape of a particle from a potential well through a
barrier. They considered a quantum particle prepared at t = 0 in the state
ψ(r, 0) = ψ(r, 0) = (1/r)(2/a)1/2 sin(πr/a)Θ(a − r) in the central potential
V (r) = V (r) = (λ/a)δ(r − a) with λ > 0 and a > 0. Their starting point
was an exact analytic expression [36] for ψ(r, t) for this model of a decaying
system that can be evaluated accurately for any value of r and t.
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So far we have said nothing about timing the arrival of the guiding wave. It
is clear that clocking a specific feature, e.g., the centroid, of a wave packet un-
dergoing unitary evolution results in a distribution of arrival times for a pure
state ensemble that is n−1Σn

i=1δ(T −Ti) where in each member of the ensem-
ble the chosen feature reaches X at the same n times { Ti | i = 1, ..., n } with
n > 0, if possible, for a sensible choice of arrival-time marker.4 In general,
such a distribution has little to do with experimental arrival-time distribu-
tions, even when n = 1.

5.3.3 Intrinsic Transmission and Reflection Times

Consider an ensemble of a very large number of identically prepared single-
particle 1D scattering experiments. In each, an electron with the same initial
wave function ψ(x, t = 0) is incident from the left on the potential barrier
V (x, t) assumed to be zero outside the range 0 ≤ x ≤ d and to be nonnegative
inside. It is assumed that the initial wave function is normalized to unity
and is localized far enough to the left of the barrier so that the integrated
probability density ρ(x, 0) from x = 0 to ∞ is negligibly small compared to
the transmission probability

PT ≡
∫ ∞

d

dx ρ(x, t∞) , (5.18)

where the scattering process is essentially completed for t ≥ t∞. A question
of long-standing interest is “What is the average time τT (R)(x1, x2) spent
in the region x1 ≤ x ≤ x2 subsequent to t = 0 by those electrons that
are ultimately transmitted (reflected) in such scattering experiments?”.5 The
quantity τT (0, d) is often referred to as a “tunneling time.” The author prefers
not to use this name because it can imply that quantum mechanical tunneling
is at the heart of the so-called “tunneling time problem.” As should become
clear in the next section, timing quantum particles is problematic even for the
simplest case of free evolution.

We now determine the mean transmission and reflection times for the
point-like particle component of an electron. For a particle that is at x = x(0)

at t = 0 the time that it spends thereafter in the region [x1, x2] is given by
the classical stopwatch expression

t(x1, x2;x(0)) =
∫ ∞

0

dt

∫ x2

x1

dx δ[x − x(x(0), t)] . (5.19)

4 Obviously, the centroid of the probability density would not be a good choice for
X on the far side of a potential barrier when the transmission probability PT is
less than 1/2.

5 For the special case of the stationary-state limit in which the dispersion Δk in
wave number k is zero, the notation τT (R)(k;x1, x2) is used.
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For the moment, we do not discriminate between transmitted and reflected
particles and determine the so-called mean dwell time by averaging (5.19) over
all x(0) to obtain (after changing the order of integration)

τD(x1, x2) =
∫ ∞

0

dt

∫ x2

x1

dx

∫ ∞

−∞
dx(0) ρ(x(0), 0) δ[x− x(x(0), t)] . (5.20)

The innermost integral is the distribution of particle positions at time t, i.e.,
ρ(x, t). Hence

τD(x1, x2) =
∫ ∞

0

dt

∫ x2

x1

dx ρ(x, t) =
∫ ∞

0

dt t [J(x2, t) − J(x1, t)] . (5.21)

The far right-hand side of (5.21) is obtained by multiplying the continuity
equation by t and integrating over t from 0 to ∞ and over x from x1 to x2.

Now, because the Bohm trajectories associated with a given wave function
do not cross each other, there is a special trajectory xc(t) ≡ x(x(0)

c , t) that
separates transmitted trajectories (those with x(0) > x

(0)
c ) from reflected ones

(those with x(0) < x
(0)
c ). It is defined implicitly by

PT =
∫ ∞

xc(t)

dx ρ(x, t) . (5.22)

Using xc(t) to decompose ρ(x, t) and J(x, t) into components associated with
transmission and reflection, e.g. ρT (x, t) ≡ ρ(x, t)Θ[x − xc(t)] and ρR(x, t) ≡
ρ(x, t)Θ[xc(t)−x], respectively, upon insertion of Θ[x−xc(t)]+Θ[xc(t)−x] ≡ 1
into the integrands of (5.21), leads immediately to

τD(x1, x2) = PT τT (x1, x2) + PR τR(x1, x2) , (5.23)

where

PT τT (x1, x2)=
∫ ∞

0

dt

∫ x2

x1

dx ρ(x, t)Θ[x − xc(t)]

=
∫ ∞

0

dt t
[
J(x2, t)Θ[x2 − xc(t)] − J(x1, t)Θ[x1 − xc(t)]

]

(5.24)

with similar expressions for PR τR(x1, x2).
Within Bohm’s theory τD, τT , and τR are real-valued, non-negative, and

additive6 quantities. However, there is a fundamental distinction between τD
and its components PT τT and PRτR: each of the integrands of (5.21) for
τD is bilinear in ψ(x, t) while those for the latter two quantities are not be-
cause they depend on the trajectory xc(t), which, from (5.22), itself is an im-
plicit functional of ψ(x, t). This has the important consequence that the mean
6 τD(x1, x3) = τD(x1, x2) + τD(x2, x3) with x1 < x2 < x3 and similarly for τT

and τR.
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transmission and reflection times τT (x1, x2) and τR(x1, x2) for wave packets
are not linear functionals of their stationary-state counterparts τT (k;x1, x2)
and τR(k;x1, x2), respectively. This loss of a useful relation appears to be the
price one has to pay for the attractive general properties of τT and τR given
above.

In the nonrelativistic case, for stationary-state scattering of “incident”
electrons of precisely defined wave number k > 0 and kinetic energy E ≡
�

2k2/2m, expression (5.21) for the mean dwell time becomes

τD(k;x1, x2) =
1

Jk,inc

∫ x2

x1

dx |ψk(x)|2 , (5.25)

a result proposed by Büttiker [37] within standard quantum mechanics. Here
the stationary-state wave function ψk(x) exp(−iEt/�) is normalized so that
the incident probability current density Jk,inc associated with the exp(ikx)
component of ψk(x < 0) is �k/m. Spiller, Clark, Prance, and Prance [38]
postulated that for |T (k)|2 > 0 the corresponding mean transmission time is
given by

τT (k;x1, x2) =
∫ x2

x1

dx/vk(x) , (5.26)

where vk(x) ≡ Jk/|ψk(x)|2 with Jk ≡ |T (k)|2Jk,inc, the stationary-state flux.
It follows from (5.25) and (5.26) that τT (k;x1, x2) = |T (k)|−2τD(k;x1, x2)
and then from (5.23) that |R(k)|2τR(k;x1, x2) = 0 for any value of x1 > −∞!
Leavens and Aers [39] expressed doubts about this result. These reserva-
tions have been put to rest [40]. For the special case of an initial gaussian
wave packet, approximate closed-form expressions were derived for ψ(x =
0, t), J(x = 0, t), and hence for v(x = 0, t) that are accurate in the
regime in which Δk/〈k〉, the small parameter of the theory, is much less
than unity. The explicit dependence of J(x = 0, t) on Δk/〈k〉 and on t
graphically confirms the “freezing out” of the PRτR(0, d) contribution to
the mean dwell time τD(0, d) as Δk/〈k〉 approaches zero. It also explains
and removes the apparent inconsistency between the stationary-state re-
sults of Spiller et al. [38] and the numerical results for time-dependent
wave packets of Leavens and Aers [39]: for an opaque rectangular barrier
PRτR(0, d) is almost constant at a value very close to τD(k = 〈k〉; 0, d) over
a wide range of decreasing Δk before eventually plummeting toward zero
at an extremely small value of Δk/〈k〉 , orders of magnitude smaller than
the smallest value (0.01) considered in the numerical wave packet calcula-
tions. The author attributes the strangeness of the stationary-state result
for τR(k) to the extreme idealization of the stationary-state limit, which
requires a single-particle wave function to be coherent over all space–time
from t = −∞.

For examples of calculated Bohm trajectory transmission and reflection
time distributions for a variety of systems, see [32, 39].
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5.4 Conventional Approaches to Timing Quantum
Particles from the Perspective of Bohmian Mechanics

5.4.1 Arrival Time in the Quantum Backflow Regime

The quantum backflow effect is important because it clearly reveals that
the problem of timing quantum events can be problematic even in the ab-
sence of quantum tunneling. Quantum backflow refers to the following re-
markable fact: for a freely evolving nonrelativistic quantum particle with a
wave function ψ(x, t) having nonzero Fourier components φ(k, t) only for
k > 0 it is possible for J(x = X, t) to be negative over a finite time inter-
val, say [t1(X), t2(X)]. The existence of this effect has been shown explicitly
by direct calculation of J(x, t) for various simple wave functions [41, 10]. A
more global way of showing the possibility of the effect is to calculate the
Fourier transform J̃(k, t) of J(x, t) for a freely evolving wave function with
Fourier transform φ(k, t) = Θ(k)φ(k) exp(−i�k2t/2m). It is readily shown
that |J̃(−k, t)| = |J̃(+k, t)|. Bracken and Melloy [42] have shown that the
time interval during which J(X, t) < 0 can be arbitrarily long but finite.
They obtained an estimate of 0.04 for the least upper bound of the quantity∫ t2(X)

t1(X) dt|J(X, t)| /
∫∞
−∞ dtJ(X, t). They also treated the relativistic case [43].

The backflow effect is the source of the following puzzle: it follows from the
continuity equation that during the time interval t1(X) < t < t2(X), when
J(X, t) is negative, the probability of finding the particle in the spatial region
[−∞, X ] is increasing with time even though many apparently regard it as a
self-evident fact that a freely evolving quantum particle described by a wave
function with only k > 0 wave number components can arrive at X only from
the left.

Within Bohmian mechanics the above “self-evident fact” is not always
true. In particular, according to (5.1), particles arrive at X only from the right
during any time interval when J(X, t) is negative. In place of the backflow
paradox one has the counterintuitive property that free particles can evidently
turn around.7 There is, however, no inconsistency within Bohmian mechanics
where the evolution of a particle is in general not truly free when V (x, t) = 0
because it is still under the influence of its guiding wave.

It is also illuminating to look at the above puzzle from the point of view
of the “standard” arrival-time distribution [1]:

Π(T ;X) = Π+(T ;X) + Π−(T ;X) ;

Π±(T ;X) =
�

2πm

∣∣∣∣
∫ ∞

−∞
dk Θ(±k) |k|1/2 exp(ikX) φ(k, T )

∣∣∣∣
2

. (5.27)

7 A much more dramatic example of a free particle turning around is provided by
a freely evolving wave function that is either symmetric or antisymmetric about
x = X at all times t. A particle guided by such a wave function can never arrive
at x = X and if initially moving toward that point must reverse its direction of
motion before reaching it.
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The derivations of Allcock [41], Kijowski [10], Grot, Rovelli, and Tate [11], and
of Delgado and Muga [12] are for the special case of free evolution in which case
φ(k, t) = φ0(k, t) ≡ φ(k) exp(−i�k2t/2m) where φ(k) is the Fourier transform
of the initial wave function ψ(x, 0). The derivation of Baute, Sala Mayato,
Palao, Muga, and Egusquiza (BSPME) [13] is for arbitrary potentials V (x)
and for both stationary and nonstationary states.

It should be noted that according to (5.27) arrivals from the left (right) are
associated with k > 0 (k < 0) and there is no interference between k > 0 and
k < 0 contributions to Π(T ;X). A key issue is how to interpret the absence of
such interference terms.8 Several years ago – when (5.27) had been constructed
only for the special case of free evolution – Muga, Leavens, and Palao [44]
suggested the following two options9: “One possibility is that the interference
terms do not in fact contribute to the intrinsic arrival-time distribution. The
other is that the distribution (5.27) is appropriate only when the apparatus
measures the sign of the momentum of each incident particle, thus collapsing
the wave function of that particle either to ψ+ or ψ−, and then switches on
the appropriate one-sided detecting screen.” Here ψ±(x, t) = N±P̂±ψ(x, t)
where P̂± is a projector onto positive (negative) wave numbers and N± is
a normalization factor. The timing of the sign-of-k projection is of critical
importance, especially in the presence of a nonzero potential V (x, t), and is
discussed in the concluding section.

Now, according to (5.27), when φ(k, t) = φ0(k, t) is nonzero only for k > 0,
the arrival-time density for arrivals from the right at x = X at time t = T
is zero for any (X ,T ), even within a backflow regime where the probability of
finding the particle to the left of x = X is increasing with time. The second of
the above options reconciles these conflicting statistical statements essentially
by aborting the first: because φ(k < 0, t) = 0 the sign-of-k projection does not
change the wave function but the active detector is sensitive only to arrivals
from the left and hence it is not meaningful to talk about arrivals from the
right.

There is another interesting difference between the Bohm trajectory and
“standard” results for Π±(T ;X). The former is local, depending only on the
value of the wave function at the space–time point (x, t) = (X,T ) of interest
in the relativistic case10 and only on the value of the wave function and its
first spatial derivative at (X,T ) in the nonrelativistic case. The latter, which
can be cast in the form [45]

Π±(T ;X) =

�

32πm

∣∣∣∣
∫ +∞

−∞
dx

[ 1 ± i sign(x−X) ]
| x − X |3/2 [ Ψ(x, T ) − Ψ(X,T ) ]

∣∣∣∣
2

,(5.28)

8 This issue does not arise for the Bohm trajectory and Wigner arrival-time distri-
butions that do not associate arrivals from the left (right) with positive (negative)
wave numbers.

9 The notation and equation numbers have been changed to conform with that of
this chapter. Also, by “momentum” is meant p = �k.

10 This is also the case for Wigner’s directed arrival-time distributions.
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is clearly temporally local but spatially nonlocal. This is the basis of various
interesting properties of the density (5.27) discussed in [46, 47, 48].

5.4.2 Superluminal Phase Times

The well-known phase time result [49, 50] for τT (0, d), (2.94), is based on
the assumption [51] that the peak (or centroid) of the incident wave packet
evolves into the peak (or centroid) of the transmitted wave packet. It has
been known for decades that this assumption can lead to superluminal and
even negative values of the phase time [52]. In Bohmian mechanics, on the
other hand, to-be-transmitted electrons are associated with the leading PT
part, ρT (x, 0) ≡ Θ[x − xc(0)]ρ(x, 0), of the initial probability density, which
for PT << 1 can be far to the right of its peak (or centroid) and, hence,
much closer to the barrier. This provides a concrete and successful example of
the wave packet “reshaping” often invoked to avoid superluminal transmission
times. An interesting question is whether there are other general prescriptions
for reshaping wave packets that also prohibit Dirac electrons from having
superluminal transmission times.

It should be noted that Landauer and Martin [53] are severely criti-
cal of both of the above ideas concerning the initial origin of transmitted
electrons. They replace it with the “prevailing common sense view” that
ρT (x, 0) = PT ρ(x, 0), where I have taken the liberty of expressing this view
in a mathematical form. Since this democratic decomposition of the initial
probability density apparently requires no wave packet reshaping it is at
least as susceptible to superluminal transmission times as the phase time
approach.

It should be noted that in the Bohm trajectory approach the question
of superluminality is addressed directly via the expression in (5.1) for the
relativistic velocity field v(r, t). On the other hand, this question is usually
addressed in a roundabout way involving a mean transmission time in ap-
proaches based on conventional, often nonrelativistic, quantum mechanics.

In Sects. 5.4.3 and 5.4.4, two general methods for deriving (nonrelativistic)
expressions for mean transmission and reflection times are looked at from the
point of view of Bohmian mechanics. Both of these can, in principle, generate
an infinite number of expressions for τT and τR in contrast to the Bohm
trajectory approach, which leads to a unique expression for each of them.

5.4.3 The Systematic Projector Approach of Brouard, Sala,
and Muga

Brouard, Sala, and Muga (BSM) [54] introduced an approach capable of sys-
tematically generating an infinite hierarchy of possible expressions for τT and
τR. A very attractive feature of this method is that it reproduces, as sim-
ple special cases, the expressions obtained with several well-known and, at
first sight, quite different approaches. Whether or not the Bohm trajectory
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approach can also be included as a special case within this unifying formalism
is an interesting question that is answered in this section [55].

The systematic projector approach is based on the projection operators
D̂(x1, x2), T̂ , and R̂ defined by

D̂(x1, x2)ψ(x, t) ≡ Θ(x − x1)Θ(x2 − x)ψ(x, t) , (5.29)

T̂ψ(x, t) ≡ ψT (x, t) ; R̂ψ(x, t) ≡ ψR(x, t) . (5.30)

The operator D̂(x1, x2) projects from the wave function ψ(x, t), the part that
is “located” in the region [x1, x2] at time t. T̂ projects from ψ(x, t), the part
ψT (x, t) that will have only positive wave number components at t = t∞
and is thus associated with transmission; R̂ ≡ 1̂ − T̂ projects from ψ(x, t),
the part ψR(x, t) associated with reflection. The T and R components of the
initial wave function have interesting properties: even when ψ(x, 0) is well
localized to the left of the barrier, for PT < 1 both ψT (x, 0) and ψR(x, 0) are
nonnegligible to the right of it. For an opaque barrier the part of ψT (x, 0) with
x > d completely dominates the part with x < 0 while the opposite is true
for ψR(x, 0). Figures 10 and 11 of [56] show calculated snapshots of ψT (x, t)
and ψR(x, t) for the case of an initial gaussian wave packet scattering from a
rectangular barrier.

The starting point of the analysis is (5.21) written in the form

τD(x1, x2) =
∫ ∞

0

dt

∫ ∞

−∞
dxψ∗(x, t) D̂(x1, x2) ψ(x, t). (5.31)

Since D̂ is a projector (i.e., D̂2 = D̂) and T̂ +R̂ = 1̂ with T̂ 2 = T̂ and R̂2 = R̂,
one can replace D̂ in (5.31) with any one of the infinite number of equivalent
expressions given by

D̂ = D̂n = (T̂ + R̂)m0 D̂ (T̂ + R̂)m1 ... (T̂ + R̂)mn−1 D̂ (T̂ + R̂)mn (5.32)

[ n = 1, 2, ... ; mi = 0, 1 (i = 0, 1, ..., n) ]

or with any suitably weighted linear combination of these primitive expres-
sions. After expansion and suitable rearrangement, the resulting decomposi-
tions of D̂ have the generic form

D̂ = F (T̂ , D̂) + F (R̂, D̂) + G(T̂ , R̂, D̂) (5.33)

with G(T̂ , R̂, D̂) = G(R̂, T̂ , D̂). Substituting this into (5.31) gives

τD(x1, x2) = PT τFT (x1, x2) + PR τFR (x1, x2) + τGT−R(x1, x2) , (5.34)

where

PT τFT (x1, x2) =
∫ ∞

0

dt

∫ ∞

−∞
dxψ∗(x, t) F (T̂ , D̂) ψ(x, t) , (5.35)
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PR τFR (x1, x2) =
∫ ∞

0

dt

∫ ∞

−∞
dxψ∗(x, t) F (R̂, D̂) ψ(x, t) , (5.36)

τGT−R(x1, x2) =
∫ ∞

0

dt

∫ ∞

−∞
dxψ∗(x, t) G(T̂ , R̂, D̂) ψ(x, t) . (5.37)

For n = 1 there are three nontrivial primitive decompositions of D̂:
T̂ D̂ + R̂D̂, D̂T̂ + D̂R̂, and T̂ D̂T̂ + R̂D̂R̂ + T̂ D̂R̂ + R̂D̂T̂ . Since T̂ and D̂
do not commute, the first two decompositions lead in general to inequiva-
lent expressions for τT , and similarly for τR. BSM also considered the (Her-
mitian) symmetric linear combination [(T̂ D̂ + D̂T̂ ) + (R̂D̂ + D̂R̂)]/2 of the
first two n = 1 primitive decompositions. Going from n − 1 to n generates
four new primitive decompositions of D̂, namely those with m1, ...,mn−1 = 1
and (m0,mn) = (0, 0), (0, 1), (1, 0), (1, 1). Of the four new ones generated for
n = 2 only D̂T̂ D̂ + D̂R̂D̂ contains no T − R interference terms; for n ≥ 3
all of the new primitive decompositions contain such interference terms. We
are now in a position to prove that the unique mean transmission and reflec-
tion times of Bohmian mechanics are not included among the infinite num-
ber of possibilities generated by the systematic projector approach [55]. This
is accomplished by showing that none of these possibilities has all four of
the general properties of the Bohm trajectory times discussed in Sect. 5.3.3.
The only decompositions of D̂ that lead to mean transmission and reflec-
tion times satisfying τD = PT τT + PRτR are the primitive ones T̂ D̂ + R̂D̂,
D̂T̂ + D̂R̂ and D̂T̂ D̂ + D̂R̂D̂, and their appropriately weighted linear combi-
nations. Requiring that the resulting mean transmission and reflection times
be spatially additive eliminates D̂T̂ D̂ + D̂R̂D̂ [54] and any linear combina-
tions containing it. Requiring that the resulting times be real-valued elimi-
nates both T̂ D̂ + R̂D̂ and its hermitian conjugate D̂T̂ + D̂R̂ but not their
symmetric linear combination. Finally, this last surviving decomposition is
eliminated when one notes that the corresponding mean reflection time can
be negative [57].

That none of the BSM expressions for τT can be identical to (5.24) also
follows immediately from the fact that the double integral in (5.35) is a bilinear
functional of ψ(x, t) while that in (5.24) is not. It is interesting that the
simple bilinear form is apparently not compatible simultaneously with all four
of the simple classical properties just discussed. It should be noted, in this
context, that Kijowski [10] derived his well-known arrival-time distribution
by requiring that certain properties of the classical distribution, including
a “surprising” one with no obvious intuitive basis, should also hold for the
quantum distribution.

What is the origin of the “orthogonality” between the Bohm trajectory
and systematic projector approaches to the determination of τT and τR? Both
approaches have the same starting point, namely (5.21) for the mean dwell
time. An important difference is that the former is based on the particle-like
decomposition ρ = ρT +ρR of the position probability density while the latter
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is based on the wave-like decomposition ψ = ψT +ψR of the wave function.11

There is no obvious inconsistency in the two approaches having the same
starting point because ρ(x, t) has the dual interpretation as the probability
density for particle position and as the local intensity of the wave function.

In Bohmian mechanics what is being timed in the theory of Sect. 5.3.3 is
the presence of an actual point-like particle in the region of interest in the ab-
sence of any external measuring device. Answering the important question of
whether the Bohm trajectory and systematic projector approaches are incom-
patible with or complementary to each other hinges on what is being timed
in the latter approach.

5.4.4 Approaches Based on the Probability Current

Olkhovsky and Recami [58] and Muga, Brouard, and Sala [54, 59] indepen-
dently postulated that the mean transmission and reflection times for the bar-
rier region [ 0, d ] can be expressed in terms of right-going and left-going com-
ponents, J+(x, t) and J−(x, t), respectively, of the probability flux J(x, t) as

τJT (0, d) =

∫∞
0 dt t J+(d, t)∫∞
0 dt J+(d, t)

−
∫∞
0 dt t J+(0, t)∫∞
0 dt J+(0, t)

, (5.38)

τJR(0, d) =

∫∞
0

dt t J−(0, t)∫∞
0

dt J−(0, t)
−
∫∞
0

dt t J+(0, t)∫∞
0

dt J+(0, t)
. (5.39)

(Olkhovsky and Recami use a convention in which the lower limit of integra-
tion is −∞.) The first term on the right-hand side of (5.38) is interpreted
as the mean exit time of particles from the barrier through its right edge at
x = d and the first term on the right-hand side of (5.39) as the mean exit time
through its left edge at x = 0. The last term of (5.38) is equal to the last term
of (5.39) and is interpreted as the mean time at which incident particles enter
the barrier, democratically reflecting the fact that within conventional quan-
tum mechanics, for x inside the barrier, one cannot separate J(x, t), let alone
J+(x, t), into “to-be-transmitted” and “to-be-reflected” components. For ex-
ample, substitution of the wave function decomposition ψ = ψT + ψR of the
projector approach into the expression for J leads to J = JT + JR + JT−R
where the T −R interference term is in general nonzero.

An important feature of the present approach is that J+(x, t) and J−(x, t)
are not uniquely defined within conventional quantum mechanics. Olkhovsky
and Recami postulated that

J±(x, t) = J(x, t)Θ[±J(x, t)] , (5.40)

11 It should be noted that the latter decomposition plays no role in Bohmian me-
chanics in the sense that a to-be-transmitted particle is guided by ψ not just by
ψT .
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while Muga et al. assumed that

J±(x, t) = ±
∫ ±∞

0

dp (p/m) fW (x, p, t) , (5.41)

where p ≡ �k/m is the free-particle momentum and fW (x, p, t) is the Wigner
function. For both choices, J(x, t) = J+(x, t) + J−(x, t) with no interference
term. For J(x, t) �= 0 the choice (5.40), by construction, always satisfies the
requirement that J+(x, t) ≥ 0 and J−(x, t) ≤ 0. However, because the Wigner
function fW (x, p, t) can be negative for some values of its arguments it is
possible for (5.41) to give negative values of J+(x, t) or positive values of
J−(x, t) for some values of x and t.

It is worthwhile to consider (5.38) and (5.39) from the point of view of
Bohmian mechanics that leads to a unique decomposition that is precisely the
one postulated by Olkhovsky and Recami. However, it is the decomposition
J = JT +JR, not J = J+ +J−, that is involved in the derivation of the Bohm
trajectory expressions (5.24) for τT and τR. Within Bohmian mechanics the
mean time at which “to-be-transmitted” electrons enter the barrier is not
equal in general to the mean time at which “to-be-reflected” electrons do.
Consider the case in which at least some of the reflected electrons enter the
barrier. The simplest such case involves two times tT and tR with tT < tR
such that only to-be-transmitted electrons enter the barrier for 0 ≤ t ≤ tT ,
only to-be-reflected ones enter for tT ≤ t ≤ tR, and none enter for t > tR.
Obviously, for this case the mean time at which to-be-transmitted electrons
enter the barrier is less than the overall average entrance time. This suggests
that the subtracted term can be too large in (5.38) and too small in (5.39)
and, in the former case, can lead to anomalously small or even negative values
for τJT (0, d) [60]. Such negative values have indeed been calculated by Delgado,
Brouard, and Muga [61].

5.4.5 The Quantile Approach

The trajectory x(P ; t) defined implicitly by

P ≡
∫ ∞

x(P ;t)

dx ρ(x, t) (0 ≤ P ≤ 1) (5.42)

is mathematically identical to the Bohm trajectory x(x(0) = x(P ; 0), t)
[33, 62].

Brandt, Dahmen, Gjonaj, and Stroh [63] arrived at (5.42) independently
by extending the concept of the quantile x(P ) associated in mathematical
statistics with a time-independent probability density ρ(x) to time-dependent
probability densities ρ(x, t) in physics and called x(P ; t) a quantile trajectory.
For the nonrelativistic case they showed that the quantile position x(P ; t) for
an initial wave packet (with only k > 0 Fourier components) incident on a po-
tential barrier lags behind the corresponding quantile position in the absence
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of the barrier. They suggested that quantile trajectories could be used to time
quantum particles within standard quantum mechanics without identifying
them with the trajectories of point-like particles. This had, in fact, already
been done for Dirac electrons by Challinor, Lasenby, Somaroo, Doran, and
Gull [64] who calculated transmission time distributions without interpreting
the streamlines of the probability flux (i.e. the quantile trajectories) as Bohm
particle trajectories but rather by assuming that “the flow of the probability
density reflects the temporal aspects of the tunneling process.” From this it
might be argued that the concept of Bohm particle trajectory is excess bag-
gage in the calculation of distributions for the characteristic times of interest
in this chapter because identical results can be obtained without the concept.
However, such an argument would be based on the above rather vague as-
sumption and is weakened by the existence of alternative results also based
on standard quantum mechanics that do not agree with those obtained with
the quantile approach. For example, in Sect. 5.3.3 it was suggested that it
might be possible to rationalize the “orthogonality” of the systematic projec-
tor and Bohm trajectory approaches on the grounds that the former is timing
waves and the latter point-like particles. Rationalizing the orthogonality of
the projector and quantile methods will be a challenge because both involve
only the wave function (none of theory involves at any stage its collapse to
a point-like region). Moreover, the concept of particle trajectory provides a
consistent picture of what might be happening in an individual member of an
ensemble and thereby provides a necessary ingredient of Bohm’s deterministic
resolution of the measurement problem and the familiar paradoxes associated
with two-slit and delayed-choice experiments [3, 7].

5.5 Spin-Dependent Arrival-Time Distributions
for Nonrelativistic Electrons

For a nonrelativistic guiding wave of the form ψ(r, t; ŝ) ≡ ψ(r, t) χ, with
ψ(r, t) a solution of the Schrödinger equation and χ a fixed spinor, the Bohm
trajectory result for the probability distribution of particle arrival times T at
the planar surface x = X for the spot (y, z) on it is given by

Π(T ;X, y, z; ŝ ) = | Jx( X, y, z, T ; ŝ ) |
/∫ ∞

0

dt |Jx(X, y, z, t; ŝ)| , (5.43)

where Jx refers to the x-component of J . Positive (negative) Jx(X, y, z, T ; ŝ )
is associated with particles arriving at the plane x = X from the half-space
x < X (x > X), i.e. Jx,± = Jx Θ( ± Jx).

Calculated results for 1D arrival-time distributions Π(T ;X) for nonrela-
tivistic particles based on the original spin-independent equation of motion
have appeared in the literature [33, 28]. Although spin does not exist in a
strictly 1D system, by a 1D system one often means a 3D system in which
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there is no spatial variation of ψ(r, t) in the transverse (y and z) directions.
This in turn is an idealization of some realistic system in which the spa-
tial variation of ψ(r, t) in the transverse directions is relatively unimpor-
tant compared to that in the longitudinal (x) direction over the volume of
interest, assumed large enough in the transverse directions to ignore edge
effects.

It is important to investigate the effect of the spin-dependent term in
(5.4) not only on the Bohm trajectory arrival-time distribution but also on
other distributions in which the probability flux enters in an important way.
(There is an entire class of “conventional” arrival-time theories based on the
nonunique decomposition of the standard spin-independent probability flux
into right-going and left-going components [15].) In order that the results of
this section be of more general interest, the focus will be on the spin depen-
dence of Jx.

For simplicity, consider a 3D system with a potential V (r) = V (x) with
no variation in the y− z plane and a wave function, which has the factorable
form ψ(r, 0) = ψx(x, 0)ψy(y, 0)ψz(z, 0) at t = 0. Then for t > 0 the wave
function is given by

ψ(r, t) = ψx(x, t)ψy(y, t)ψz(z, t) , (5.44)

with ψx(x, t) satisfying i�∂ψx(x, t)/∂t = [−(�2/2m)∂2/∂x2 + V (x)]ψx(x, t)
and ψy(y, t) and ψz(z, t) satisfying the corresponding free-particle Schrödinger
equations. From (5.4) it immediately follows that

Jx(r, t; ŝ) =
�

m
|ψ(r, t)|2

[
Im
(∂ lnψx(x, t)

∂x

)
+ ŝz

∂ ln |ψy(y, t)|
∂y

− ŝy
∂ ln |ψz(z, t)|

∂z

]
. (5.45)

For the special case ŝ = x̂ the spin-dependent terms in both (5.45) for Jx and
the arrival-time distribution (5.43) are zero. For mixed ensembles in which
ψ(r, t) is common to all members and χ varies from member to member in
such a way that the average value of s is zero, the additional term makes
no contribution to the probability current density for the entire ensemble.
Similarly, if ψy(y, t) and ψz(z, t) are symmetric about, say, y = 0 and z = 0,
respectively, then averaging Jx(X, y, z, t; ŝ) over the planar region [−Ly ≤ y ≤
+Ly , −Lz ≤ z ≤ +Lz] gives a quantity that is independent of ŝ.

Consider the special case in which V (x) = 0 and the wave function of the
freely evolving quantum particle is of the form (5.44) with ψx(x, t) antisym-
metric about x = X so that both |ψ(r, t)|2 and Jx(r, t; ŝ) are zero at x = X
for all y, z, and t. According to Bohmian mechanics, such a freely evolving
particle never arrives at the plane x = X regardless of the direction of ŝ.

For a more mundane, but important, example consider the free evolution
[V (x) = 0] of the initial 3D gaussian wave function
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ψ(r, 0) =
1

(2π)1/4Δ1/2
x

exp
[
−
(x− x0

2Δx

)2

+ ik0x
]

× 1

(2π)1/4Δ1/2
y

exp
[
−
( y

2Δy

)2] 1

(2π)1/4Δ1/2
z

exp
[
−
( z

2Δz

)2]

(5.46)

where it is assumed that the initial centroid x0 is negative and the mean wave
number k0 is nonnegative. The x-component of the flux at time t is

Jx(r, t; ŝ) =
�|ψ(r, t)|2

m

[ (2Δ2
xk0 + �t(x− x0)/2mΔ2

x)
γx(t)

− ŝzy

γy(t)
+

ŝyz

γz(t)

]
, (5.47)

where

|ψ(r, t)|2 =
1

[π3γx(t)γy(t)γz(t)]1/2

exp
[
− (x− x0 − �k0t/m)2

γx(t)
− y2

γy(t)
− z2

γz(t)

]
(5.48)

and
γx(t) ≡ 2Δ2

x

[
1 +

(
�t

2mΔ2
x

)2]
, (5.49)

with γy(t) and γz(t) obtained from (5.49) by replacing x by y and z, respec-
tively.

At first sight it appears that the size of the spin-dependent terms in (5.47)
relative to the standard one can be made arbitrarily large by simply mak-
ing |y| and/or |z| sufficiently large. However, once the corresponding particle
velocity J(r, t; ŝ)/|ψ(r, t)|2 exceeds c in absolute value the nonrelativistic ap-
proximation for J should definitely not be used. Moreover, a large relative
spin dependence is of little importance if the absolute size of the effect is
negligible because of the factor exp[− y2/γy(t) − z2/γz(t)].

In order to cut down on the number of variables, cylindrical symmetry
(Δy = Δz) is assumed for ψ(r, t) and sy is fixed at 0 for the rest of this
section. It should be noted that keeping y fixed and changing sz to −sz then
leads to the same change in Jx as keeping sz fixed and changing y to −y.
This might be important experimentally. With this in mind, it is of interest
to consider the special case ŝ = ẑ and introduce a global measure of the
y-asymmetry in Jx(x, y, z, t; ẑ ):

Ax(x, t; ẑ ) ≡ J
(−)
x (x, t; ẑ ) − J

(+)
x (x, t; ẑ )

J
(−)
x (x, t; ẑ ) + J

(+)
x (x, t; ẑ )

, (5.50)

where J
(±)
x (x, t; ẑ ) is obtained by integrating Jx(x, y, z, t; ẑ ) over all z and

over all positive or over all negative y, respectively, i.e.,
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J (±)
x (x, t; ẑ ) ≡ ±

∫ ±∞

0

dy

∫ +∞

−∞
dz Jx(x, y, z, t; ẑ ) . (5.51)

The denominator in (5.50) is equal to Jx(x, t) obtained by integrating the
standard expression for Jx(r, t) over all y and all z. For the wave func-
tion under consideration, the y-asymmetry arises solely from the spin depen-
dence. Another nice feature of this wave function as regards a measurement
of Ax(x, t; ẑ ) is that the contribution is smallest for y = 0 and largest for
|y| = [γy(t)/2]1/2 ≥ Δy, giving a little leeway in the accurate location of
y = 0 on the detector plane, which we will take to be x = X = 0. For the
initial wave function (5.46) one obtains

Ax(0, t; ẑ ) =
γx(t)

π1/2γy(t)1/2(2Δ2
xk0 − �tx0/2mΔ2

x)
. (5.52)

For t > 0 the factor of γy(t)−1/2 is zero in both Δy → 0 and Δy → ∞
limits and for a fixed positive value of t, say τ , takes on its maximum
value of (m/2�τ)1/2 when Δy = Δy(τ) ≡ (�τ/2m)1/2. To obtain a feel-
ing for the importance of the asymmetry in the regime k0 >> Δkx and
|x0| >> Δx of usual interest, let us maximize Ax(0, t; ẑ) as a function of
Δy at the characteristic time t0 ≡ |x0|/(�k0/m) for the motion of the cen-
troid of |ψx(x, t)|2 by choosing Δy = Δy(t0). It immediately follows that
Ax(0, t0; ẑ )2 ≤ 1/(2π|x0|k0) << Δx/(π|x0|) << 1/π, where ΔxΔkx = 1/2
has been used. Hence, in the regime under consideration the y-asymmetry
is not expected to be large for t near t0, where Jx(x = 0, t) is expected
to be relatively large. Let us now remove the restriction k0 >> Δkx by
choosing k0 = 0 and maximize Ax(0, t; ẑ ) as a function of Δy at the char-
acteristic time t′0 ≡ |x0|/(�Δkx/m) for spreading of the packet to obtain
Ax(0, t′0; ẑ ) ≤ (Δx/π|x0|)1/2 (to leading order in Δx/|x0|). Hence, the im-
portance of the spin-dependence of the arrival-time distribution (5.43) can
be enhanced by relaxing the frequently imposed constraint k0 >> Δkx. This
has been confirmed by explicit calculation for free electrons having the initial
wavefunction (5.46) with Δkx = k0 and Δx = Δy = Δz .

It is clear from the above analysis and from detailed calculations in the re-
cent literature [24] that there are situations in which Bohm trajectory arrival-
time distributions for nonrelativisitic electrons with a two-component wave
function of the form ψ(r, t)χ can exhibit a significant dependence on spin di-
rection. This is not necessarily the case for other approaches. For example, the
“time-of-presence” result (5.17) for the arrival-time distribution is indepen-
dent of ŝ. Hopefully, it will prove possible to investigate the spin-dependence
of arrival-time distributions with experiments on spin-polarized electrons.

5.6 Protective Measurements and Bohm Trajectories

A recent paper by Aharonov, Englert, and Scully (AES) [65] with the above
title “challenges any realistic interpretation of Bohm trajectories.” These au-
thors consider “a protective measurement of a particle in a box and find that
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the particle participates in a local interaction although its Bohm trajectory
never comes near the interaction region.” In particular, they claim the fol-
lowing: “[This] should have been quite disturbing to adherents of Bohmian
mechanics because it implies that Bohm trajectories are forever hidden. If
you cannot rely on local interactions to determine the ‘actual position’ of the
particle, then you cannot determine it at all. The concept of position itself
becomes shaky.”

Now, that one cannot directly measure a Bohm trajectory is an inevitable
consequence of the position–momentum uncertainty relation and has been
known from the beginning – after all, the titles of Bohm’s seminal papers
were ‘A suggested interpretation of the quantum theory in terms of “hidden
variables”: Part I; Part II.’12 Moreover, the concept of particle position is
already shaky in relativistic quantum mechanics and this is much more of
a problem for conventional quantum mechanics than for a realistic theory
such as Bohmian mechanics, which is founded on “beables” [6] rather than
“observables” and hence does not mandate that a quantity cannot exist unless
it is precisely measurable (at least in principle).

AES consider a thought experiment involving two quantum particles in
which a protective measurement is made on the first with the second acting as
a meter. The first has mass m1 and is confined to the interior of a box extend-
ing from x = −l to x = +l. It is prepared at t = ti in the lowest-energy eigen-
state with initial wave function ψ1(x1, ti) = l−1/2 cos(πx1/2l)Θ(x1 + l)Θ(l−
x1) .13 The second has mass m2 and is not subject to any confining potential;
its initial wave function is ψ2(x2, ti) = (2/π)1/4(Δp2/�)1/2 exp[−(x2Δp2/�)2],
a Gaussian with mean position x̄(ti) = 0, mean momentum p̄(ti) = 0, spatial
width Δx2(ti), and momentum width Δp2 ≡ Δp2(ti) = 1/[2Δx2(ti)]. The two
quantum particles are subsequently coupled via the interaction

Hint = ε
�

T
f
( t

T

)
δ(x̂1) x̂2 , (5.53)

where f(t/T ) is zero for |t| > T and positive for |t| < T with −T ≥ ti,
and the integral of T−1f(t/T ) over all t is 1. For simplicity, f(t/T ) is also
assumed to be symmetric about t = 0. AES consider a protective measurement

12 If one knows the initial wave function ψ(x, 0) and the potential V (x, t) then the
result Xa(t

′) ≤ x(t′) ≤ Xb(t
′) of a measurement of the particle’s position at a

well-specified instant of time t′ enables one to retrodict a band of nonintersecting
Bohm trajectories for previous times t bounded by Xa(t) and Xb(t), one of which
– according to the theory – is the actual trajectory. The t-dependent width of the
band, of course, depends on the precision of the original (strong) position mea-
surement at t = t′, which cannot be made arbitrarily small because of relativistic
particle–antiparticle creation and annihilation effects.

13 The Θ functions included here are essential. Otherwise one is led to the usual claim
that the wave function is a superposition of two running waves, with wave numbers
k = ±(π/2l), moving in opposite directions. In fact, the distribution of wave
numbers for the correct wave function is |φ(k)|2 = (π2/2l3)[1+cos(2kl)]/[(π/2l)2−
k2]2 and takes on its maximum value at k = 0.
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[66, 67, 68, 69, 70] in which (a) T is sufficiently large relative to other relevant
timescales and f(t/T ) sufficiently smooth that the coupling is adiabatic and
the first quantum particle remains in its time-dependent ground state and (b)
the dimensionless parameter ε is sufficiently small that this ground state at
t ≥ T is negligibly changed from the initial one. They showed that under these
conditions the wave function for t ≥ T is given to a good approximation by

Ψ(x1, x2, t) =
1

l1/2
cos
(πx1

2l

)
Θ(x1 + l)Θ(l − x1) exp[iφ(t)]

[α(t)Δp2

�

]1/2

· exp
[
−α(t)([x2 − δx2(t)]Δp2)2

�2
+ i

[x2 − δx2(t)]δp2

�

]
(5.54)

where α(t) ≡ 1/[1+i2(Δp2)2(t−ti)/�m2]. The time-dependent spatial spread
of the uncoupled meter is Δx2(t) = Δx2(ti)/|α(t)|; the final shift of the meter’s
mean momentum, δp2 ≡ δp2(t ≥ T ), is given by

δp2 = −ε �

∫ ∞

−∞
dx1 ψ∗

1(x1, ti)δ(x1)ψ1(x1, ti)

= −ε � |ψ1(0, ti)|2 = − ε�

l
. (5.55)

The corresponding (time-dependent) shift of the meter’s mean position is
δx2(t > T ) = (δp2/m2)t. The time-dependent phase φ(t) is irrelevant.

To complete the measurement of |ψ1(0, ti)|2, i.e., of −δp2/ε�, a standard
measurement of the momentum shift δp2 is made for some instant of time
t > T . If this shift is very much larger than the momentum width Δp2 then
one can, with high probability, obtain an accurate result for |ψ1(0, ti)|2 by
performing just one such measurement on a single member of the ensemble.

In the absence of any coupling between the two quantum particles, the
Bohm velocity field v1(x1, t) of the first is zero and it remains at rest at some
unknown position within the box, i.e., its Bohm trajectory is x1(x

(0)
1 , t) = x

(0)
1 .

AES show that, unless the starting position x
(0)
1 at t = ti is very close to the

origin x1 = 0, the weak adiabatic coupling of the above protective measure-
ment does not perturb the first particle sufficiently for its trajectory to reach
the origin. They conclude as follows: “Accordingly, one has to concede either
that the particle’s Bohm trajectory and its position are unrelated, or that the
particle’s position is irrelevant for its participation in local interactions. The
second concession cannot be considered seriously because it would put away
with the phenomenological meaning of position altogether. Therefore we can
hardly avoid the conclusion that the formally introduced Bohm trajectories
are just mathematical constructs with no relation to the actual motion of the
particle.” I think that there is an alternative interpretation of their analysis
that does not involve either theory making concessions.

I find the presentation of [65] misleading for two reasons. Firstly, it does not
acquaint the reader with the ontology of Bohm’s theory and is not phrased in
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a manner consistent with that ontology (e.g., “particle” is used when “wave”
or “wave function” is the appropriate word). Secondly, there are crucial prop-
erties of protective measurements, including striking similarities regarding the
status of the wave function in the two theories, which are not mentioned.

For a system of N quantum particles described by Bohm’s theory the
ontology is one of N real point-like particles that are always accompanied by
a real wave – the wave function Ψ(r1, ..., rN , t) – that probes the environment
of each particle and choreographs [9] its motion accordingly so that it has a
well-defined trajectory. For the nonrelativistic one-dimensional N = 2 system
analyzed by AES the equations of motion for the particles are [2, 3, 4, 5, 6,
7, 8, 9]

vj(t) = vj(x1, x2, t)x1=x1(t),x2=x2(t)

=
Jj(x1, x2, t)
ρ(x1, x2, t)

∣∣∣∣∣
x1=x1(t),x2=x2(t)

(j = 1, 2) (5.56)

where

Jj(x1, x2, t) ≡ �

mj
Im
[
Ψ∗(x1, x2, t)

∂Ψ(x1, x2, t)
∂xj

]
(j = 1, 2) . (5.57)

The concern expressed by AES is that the first particle can participate in
an interaction localized at the point x1 = 0 by the delta function δ(x̂1) in
the interaction Hamiltonian even though its trajectory never reaches that
point. Let us first consider the one-particle case with external potential
V (x, t) = ε′(1/T )f(t/T )V (x) where the subscript 1 has been dropped for
simplicity and ε′ is a fixed parameter with dimensions of time. The wave
function ψ(x, t) probes the environment described by V (x, t) directly and lo-
cally, both spatially and temporally, as evidenced by the term V (x, t)ψ(x, t)
in the wave equation. The guidance of the point-like particle by the wave
function is also direct and local as evidenced by the equation of motion
v(t) = [J(x, t)/ρ(x, t)]x=x(t). (The instantaneous velocity of the particle com-
ponent of a Dirac electron is determined solely by the (four components of
the) wave function at the instantaneous space–time location of the particle.)
The effect of the potential in the immediate neighborhood of a specific space–
time point (x′, t′) on the particle when it is at (x′′, t′′ ≥ t′) is mediated by the
guiding wave. Since the functional derivative δψ(x′′, t′′)/δV (x′, t′) for times t′′

subsequent to t′ is not in general zero for x′′ �= x′, it is not necessary for the
point-like particle of Bohm’s theory to reach x′ at some time subsequent to t′

to be influenced by the potential at (x′, t′). Hence, the interaction of the parti-
cle with the potential is in general indirect, retarded in time and, in the above
sense, nonlocal in space. For the two-particle case the interaction of the first
particle with the total potential V (x1, x2, t) is mediated by the guiding field
Ψ(x1, x2, t) and there is no necessity for the first particle to reach x′

1 subse-
quent to t′ to be influenced by V (x′

1, x
′
2, t

′). This is particularly so in this case
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because of the well-known fact that unless the wave function is factorable, i.e.,
unless Ψ(x1, x2, t) can be written in the form ψ1(x1, t)ψ2(x2, t), the motion of
each of the “entangled” particles depends on the instantaneous position of the
other no matter how far apart they are at time t or how weak the interaction
V has become. Bell [6] considered it a “merit” of Bohmian mechanics that
this nonlocality is so manifest that it cannot be ignored. He did not ignore
it and consequently discovered his famous inequalities [6]. It is rather ironic
that if the nonlocal influence of the second particle on the first had been such
as to cause the latter to pass through x1 = 0 then the case made by AES for
a Bohmian particle not participating properly in a local interaction might not
have gone ahead.

It is clear that within Bohmian mechanics the first particle’s position
is relevant for its participation in interactions but the interactions in ques-
tion, being mediated by the guiding wave, are not local in the sense of
Aharonov, Englert, and Scully. Hence, their second choice of concession should
be dropped simply because it is not relevant within Bohmian mechanics. As
argued below, elimination of this concession does not necessarily imply that
one should make the alternative one, namely that “the particle’s Bohm tra-
jectory and its position are unrelated.”

The above postulated role for the wave function as a guiding wave makes
little sense if the wave function of an individual system is not regarded as a
real physical entity. Now, the originators and main proponents of the idea of
a protective measurement have repeatedly claimed [66, 67, 68, 69, 70] that
the wave function of a single system is real because it can be observed with
this new kind of measurement. AES stress that the wave function possesses a
physical significance not only for an ensemble of identically prepared systems
but also for a single system. However, they do not mention that this dual
role for the wave function is also an important feature of Bohmian mechanics,
one that has been held against it. Moreover, Anandan [68] has extended the
theory of protective measurements to systems of many quantum particles and
concluded that this “clearly shows that it is the wave in configuration space,
and not physical space, which acquires an ontological meaning.” This echoes a
statement made about Bohmian mechanics by Bell in Chap. 15 of [6]: “No one
can understand this theory until he is willing to think of ψ as a real objective
field rather than just a ‘probability amplitude’. Even though it propagates
not in 3− space but in 3N− space.”

I see no reason why an extremely slow and weak protective measurement
on a single system or on a single member of an ensemble especially designed
to measure the local intensity of the wave function, that is, the guiding wave
of Bohm’s theory, should simultaneously provide a local measurement of the
presence of the point-like particle of Bohm’s ontology for that single system.
After all, the two components are very different entities – it is only the former
that is expected to have identical behavior in each member of a pure state
ensemble. The behavior of the point-like particle, on the other hand, varies
randomly from member to member. In fact, in [66] Aharonov, Anandan, and
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Vaidman conclude “ A [quantum] particle manifests itself through its entire
wave function during a protective measurement instead of manifesting like
a point particle as in the usual measurement.” From the point of view of
Bohmian mechanics this is a very attractive result because it means that
the two components of an electron, namely the point-like particle and the
guiding wave, can be experimented upon separately in the strong-fast and
weak-slow coupling limits, respectively. Presumably, in intermediate regimes
of coupling both components would contribute, making the extraction of useful
information about either difficult.

Consider a single standard (i.e., impulsive, strong, and wave function col-
lapsing) measurement of the position of a particle –what Mielnik [25] likens to
a large number of simultaneous police raids– on one member of an ensemble.
It would be illogical to claim that the failure to find the particle in a specific
localized region meant that the (precollapse) wave function had zero intensity
in that region. Given the ontology of Bohm’s theory it seems equally illogical
to demand for a single measurement on an individual ensemble member that
the particle component must spend in some specified localized region a time
proportional to the protectively measured wave function intensity for that re-
gion. This view finds support in papers published prior to [65] by Aharonov
and collaborators. In particular, they discounted a (generic) hidden-particle
trajectory explanation of the above protective measurement result by con-
sidering the first excited energy eigenstate, which has a node at the centre
of the potential well. They argued that if the measured result for any small
spatial region was in fact a direct reflection of the fraction of the time interval
−T ≤ t ≤ +T spent there by the single particle, then the particle must spend
half of its time in each half of the box and consequently pass through the node
with infinite velocity.14 They also pointed [66] out that the particle of Bohm’s
theory, being at rest, “ cannot move to and fro as required” in this (refuted)
explanation.

The mathematical description of the protective measurement of [67, 69],
which is essentially the same15 as that of [65] except that the localized regions
of interest are not restricted to the center of the box, reveals an important
property that is directly relevant to what is actually being measured. For any
very short period of time δt, within an extended temporal range in which
the coupling with the measuring device is independent of time, the measuring
device shifts by an amount proportional to |ψ(x = 0)|2δt [67]. Similarly, one
can carry out the measurement much more quickly by coupling a single me-
ter simultaneously to a very large number of independent quantum particles

14 A problem with this argument is that it does not apply to Dirac electrons, for
which energy eigenstates do not have nodes in 1D, and one must show instead that
the tentative explanation can lead to superluminal particle speeds. One would
presumably consider a well with walls not so high that the single-particle inter-
pretation of Dirac’s equation ceased to be a good approximation.

15 x̂2 is replaced by p̂2 and δ(x1) by (1/vn) if x1 ∈ Vn and 0 otherwise, where vn is
the volume of the nth small region Vn.
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each prepared with the same initial wave function ψ1 and, according to the
theory, contributing equally to the total shift of the meter [70]. Both of these
clearly indicate that for a single quantum particle it is the local intensity of
the wave function of a single system that is being measured in the thought
experiment of [65] and not the integrated presence of a hypothetical point-like
particle in the region of interest. For example, by coupling the single meter
to a sufficiently large number of quantum particles one can make the required
coupling time so short that the times of presence of the associated point-like
particles, with initial positions distributed according to |ψ1|2, in any specified
small region cannot possibly be identical unless they always move with infinite
speed. In Bohm’s theory, for the system considered by AES, they do not move
at all before the coupling is turned on and very slowly afterward. Hence, there
is no necessary inconsistency between Bohm’s theory and the claim that it is
the local intensity of the wave function in each system that is being probed in
the protective measurement. One could also conclude that the mathematical
description is consistent with the nonexistence of a point-like particle between
those instants of time in which it is observed as such, for example, in a stan-
dard position measurement. However, this interpretation of the mathematics
cannot be verified experimentally because in the first case considered above
the spatial shift of the meter in the time δt is too small to be observed and in
the second the individual contributions to the net shift of the meter are not
identified and measured. That is, in both cases, what is needed to possibly
refute Bohm’s hidden variable theory is itself hidden.

It should be noted that Aharonov, Englert, and Scully’s conclusion that
Bohm trajectories are “just mathematical constructs with no relation to the
actual motion of the particle” confirms earlier conclusions [71, 72] based on
standard and weak measurements. The conclusion based on standard mea-
surements has recently been criticized by Hiley, Callaghan, and Maroney [73].
Moreover, there is an inconsistency between the protective and weak measure-
ment conclusions: an important general conclusion of protective measurement
theory [66, 67, 68, 69, 70] is that the wave function is real while the nega-
tive conclusion of Aharonov and Vaidman [72] regarding the reality of Bohm
trajectories based on their weak measurement analysis hinges on their “par-
ticular approach to the Bohm theory in which the wave is not considered to be
a ‘reality’.” Their particular approach is a possibility but is not the approach
adopted in this chapter. In my opinion, protective measurements on energy
eigenstates support the latter approach.

5.7 Concluding Comments

It is a mathematical fact that the momentum distribution �
−1 |φ(k, t)|2 is in-

dependent of time for an ensemble of freely evolving quantum particles all pre-
pared in the same state ψ(x, 0). Now, the question “Can the velocity of an in-
dividual freely evolving particle change with time?” is a meaningful one within
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Bohmian mechanics and the answer is “yes.” I suspect that, for a variety of
good reasons, most quantum physicists would regard this as a meaningless
question within conventional quantum mechanics. If that is the case, then
for the same reasons they should also regard the question “Is the velocity of
an individual freely-evolving particle constant in time?” as a meaningless one
within conventional quantum mechanics. But, there are many statements in
the literature that suggests that many do not share this view. For example, in
his classic monograph “General Principles of Quantum Mechanics” Pauli [74]
explicitly stated that the probability density in momentum space is constant
in time for free particles since the momentum of the particle itself is constant.
This claim that the momentum of a free particle is constant in time is implicit
in the well-known gedanken experiment in which the instantaneous momen-
tum p(t0) of a single particle localized in some confining potential V (x) is de-
termined by switching off the potential at the specified instant of time t = t0
and then measuring the time of flight of the liberated particle over a flight
path L very much longer than the spatial extent of the wave function at t0 [75].
Then, p(t0) = mL/(T − t0) with an accuracy that depends primarily on that
of the measured arrival time T at the detector. It seems that this claim is also
implicit in a recent derivation [11] of the arrival-time distribution (5.27) for
free particles, which is based on the assumption – presented as a self-evident
fact – that every free particle in an ensemble described by a wave function with
φ(k = 0, t) = 0 must arrive once and only once at any spatial point X at some
time T between −∞ and +∞.16 It is this assumption that leaves no room for
k > 0/k < 0 interference terms in Π(T ;X). The claim that the momentum of
an individual freely evolving particle – not in a momentum eigenstate – is con-
stant in time is, in my opinion, an unjustified assumption within conventional
quantum mechanics. Doesn’t this assumption imply that such a particle has
a trajectory x(t) = x(0) + p(0)t/m with two hidden variables x(0) and p(0)?

To say that something arrives at x = X at a certain instant of time t = T
implies that it existed for a finite interval of time before the moment of ar-
rival. This leads naturally to the problem posed by Wigner [20] of deriving
the probability that a particle arrives at a specified point x = X at time
T from the left and also the probability that it arrives at time T from the
right. Neither the Bohm trajectory nor Wigner’s answers to this question, i.e.,
the directed arrival-time densities Π±(T ;X) of Sect. 5.3.2, associates arrivals
from the left (right) with k > 0 (k < 0) wave number components of the wave
function. On the other hand, the “standard” answer [13] does make such an
association. As a result, an important issue is providing an operational mean-
ing for the arrival-time distribution (5.27) consistent with it containing no
16 The usual definition of the arrival-time distribution has been extended to include

arrival times in the range [−∞, 0] by imagining that the particle was prepared
at t = −∞ in the state, which, in the assumed absence of any interaction, would
evolve to the desired initial state ψ(x, t = 0) at t = 0. It is claimed that for
the extended problem, just as in the classical case (with p(t) = p(0) 
= 0), every
particle must reach X once and only once.
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term associated with interference between k > 0 and k < 0 components. The
following thought experiment to measure the distribution (5.27) for the case
of free evolution has been proposed [15]. A strong measurement of the sign of
the momentum of each incident quantum particle is made, collapsing the wave
function to either ψ+ or ψ−. In each member of the ensemble, the result of this
measurement triggers the switching on of the appropriate one-sided detector
at x = X . In order not to miss any arrivals the sign-of-momentum measure-
ment should be made as early as possible. The most efficient way of performing
the experiment would be simply to prepare the desired mixture of the states
ψ+ and ψ− at t = 0 with the appropriate one-sided detectors already in place.
The experiment for the case in which the potential V (x, t) is not zero would
be much more difficult, perhaps impossible, to implement because for each
ensemble member it is necessary to measure the sign of the momentum and
turn on the corresponding one-sided arrival-time detector an instant before
the particle will be found to have arrived at X , i.e., before the potential can
introduce a nonnegligible contribution to the wave function with the “wrong”
sign of the momentum. Since one cannot predict when an individual detection
will occur it will be necessary to discard all those measured arrival times that
occur outside some specified temporal window [t±, t± + Δt] where t± is the
time at which the sign-of-momentum measurement is made, assuming that
such a measurement can be made at an instant of time and the appropriate
detector inserted immediately afterward. Hopefully, a suitable choice for Δt

could be determined empirically by measuring Π(T ) for decreasing values of
Δt until convergence is reached. In addition, there will be nondetections when
the choice of t± is too large. Moreover, there are interesting conceptual and
practical issues associated with the collapse of the wave function ψ at t = t±
to either ψ+ or ψ− accompanied by an instantaneous change of integrated
probability density for the two half-spaces x > X and x < X .

Generalizing various approaches for deriving arrival-time distributions for
Schrödinger particles to the case of Dirac particles could be an interesting
avenue for future research, especially if there is the possibility that arrival-time
experiments on spin-polarized electrons might discriminate between different
theories. This will probably require that the theories be specialized to the case
of first arrivals, which is relatively simple for the Bohm trajectory approach
but has not been implemented for the standard approach.

Finally, in my opinion, there is the possibility that the concept of protective
measurement on an energy eigenstate might enhance, rather than weaken, the
version of Bohmian mechanics adopted here in which the reality of the wave
function is an important element.
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Appendix

The Dirac equation describing an electron minimally coupled to the electro-
magnetic four potential [U(r, t),A(r, t)] is [76, 77, 78, 79]

i�
∂

∂t
ψ(r, t) =

{
cα̂ ·

[
(�/i)∇ − (e/c)A(r, t)

]
+ β̂mc2 + α̂0eU(r, t)

}
ψ(r, t) , (5.58)

where the wave function ψ(r, t) is a four-component column matrix,

ψ(r, t) ≡

⎛

⎜⎝

ψ1(r, t)
ψ2(r, t)
ψ3(r, t)
ψ4(r, t)

⎞

⎟⎠ ≡
(

ψ1(r, t), ψ2(r, t), ψ3(r, t), ψ4(r, t)
)T

, (5.59)

and α̂x, α̂y, α̂z, β̂, and α̂0 ≡ 1̂ are 4x4 matrices. In the standard representation
used here

α̂x ≡

⎛

⎜⎝

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

⎞

⎟⎠ , α̂y ≡

⎛

⎜⎝

0 0 0 −i
0 0 i 0
0 −i 0 0
i 0 0 0

⎞

⎟⎠ ,

α̂z ≡

⎛

⎜⎝

0 0 1 0
0 0 0 −1
1 0 0 0
0 −1 0 0

⎞

⎟⎠ , β̂ ≡

⎛

⎜⎝

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

⎞

⎟⎠ . (5.60)

The continuity equation

∂

∂t
ρ(r, t) + ∇ · J(r, t) = 0 (5.61)

is satisfied for
ρ(r, t) ≡ ψ†(r, t)ψ(r, t) , (5.62)

J(r, t) = cψ†(r, t) α̂ ψ(r, t) , (5.63)

where

ψ†(r, t) ≡
(
ψ∗

1(r, t), ψ∗
2(r, t), ψ∗

3(r, t), ψ∗
4(r, t)

)
. (5.64)
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The range of validity of the single-electron interpretation of the Dirac equation
(5.58) is not well-defined [78]. It is a basic assumption of this chapter that
there exists a very low energy regime in which it is justified to interpret ρ(r, t)
and J(r, t) as single-electron probability and probability current densities, re-
spectively, to an adequate approximation. By “adequate approximation” it is
meant that the results obtained with the Dirac equation are a closer approxi-
mation to reality than the corresponding ones obtained with the Schrödinger
(or Pauli) equation and are not significantly altered by second quantization of
the Dirac theory to take accurately into account the effects of real and virtual
electron–positron creation and annihilation.

It is well-known [3, 7] that the velocity field v(r, t) ≡ J(r, t)/ρ(r, t) of
Bohm’s ontological interpretation of relativistic quantum mechanics cannot
exceed c in absolute value. This is easily proven by straightforward calculation
of the quantity ρ2(r, t)[1 − v2(r, t)/c2] for the Dirac wave function (5.59).
With the jth component of the wave function expressed in polar form, i.e.,
ψj(r, t) ≡ |ψj(r, t)| exp[iϕj(r, t)], the result can be written as

ρ2[1 − v2/c2] = ( |ψ1|2 + |ψ2|2 − |ψ3|2 − |ψ4|2)2 +
4 [|ψ1||ψ3| sin(ϕ1 − ϕ3) + |ψ2||ψ4| sin(ϕ2 − ϕ4)]2 (5.65)

with ρ = |ψ1|2+ |ψ2|2+ |ψ3|2+ |ψ4|2. Since the right-hand side of this equation
is nonnegative, v2 cannot exceed c2 whenever ρ �= 0. It should be noted that
α̂2 = 3 1̂ and hence that the local expectation value of the square of the
velocity operator, that is, of (cα̂)2, is 3c2.
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Decoherent Histories for Space–Time Domains

Jonathan J. Halliwell

Blackett Laboratory, Imperial College, London SW7 2BZ, UK

The decoherent histories approach is a natural medium in which to address
problems in quantum theory that involve time in a non-trivial way. This
chapter reviews the various attempts and difficulties involved in using the
decoherent histories approach to calculate the probability for crossing the
surface x = 0 during a finite interval of time. The commonly encountered dif-
ficulties in assigning crossing times arise here as difficulties in satisfying the
consistency (no-interference) condition. This can be overcome by introducing
an environment to produce decoherence, and probabilities exhibiting the ex-
pected classical limit are obtained. The probabilities are, however, dependent
to some degree on the decohering environment. The results are compared with
a recently proposed irreversible detector model. A third method is introduced,
involving continuous quantum measurement theory. Some closely related work
on the interpretation of the wave function in quantum cosmology is described.

6.1 Introduction

Although opinions differ as to the value and achievements of attempts to
quantize the gravity, it is undeniable that this endeavour has inspired a con-
siderable amount of work in a variety of related fields. In particular, the quan-
tization of gravity puts considerable pressure on both the mathematical and
conceptual foundations of quantum theory, so it is perhaps not surprising that
many researchers in quantum gravity have been drawn into working on the
foundations of quantum mechanics.

One of the key issues that arises in the quantization of gravity is the
“Problem of Time”. In the quantization of cosmological models, the wave
function of the universe satisfies not a Schrödinger equation but the Wheeler–
DeWitt equation,

HΨ [hij , φ] = 0 . (6.1)

The wave function Ψ depends on the three-metric hij and the matter field con-
figurations φ on a closed space-like three-surface [25, 37, 39]. There is no time
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label. Its absence is deeply entwined with the four-dimensional diffeomorphism
invariance of general relativity. It is often conjectured that “time” is somehow
already present amongst the dynamical variables hij , φ, although to date it
has proved impossible to extract a unique, globally defined time variable.

Although a comprehensive scheme for interpreting the wave function is
yet to be put forward, a prevalent view is that the interpretation will involve
treating all the dynamical variables hij , φ on an equal footing, rather than
trying to single out one particular combination of them to act as time. For
this reason, it is of interest to see if one can carry out a similar exercise in
non-relativistic quantum mechanics. That is, to see what predictions quantum
mechanics makes about space–time regions, rather than regions of space at
fixed moments of time.

Such predictions are not the ones that quantum mechanics usually makes.
In standard non-relativistic quantum mechanics, the probability of finding a
particle between points x and x + dx at a fixed time t is given by

p(x, t)dx = |Ψ(x, t)|2 dx , (6.2)

where Ψ(x, t) is the wave function of the particle. More generally, the variety
of questions one might ask about a particle at a fixed moment of time may
be represented by a projection operator Pα, which is exhaustive,

∑

α

Pα = 1 , (6.3)

and mutually exclusive,
PαPβ = δαβPα . (6.4)

The projection operator appropriate to ask questions about position is P =
|x〉〈x|. The probability of a particular alternative is given by

p(α) = Tr (Pα�) , (6.5)

where � is the density operator of the system at the time in question.
The key feature of the above standard formulae is that they do not treat

space and time on an equal footing. Suppose one asks, for example, the same
sort of question with space and time interchanged. That is, what is the prob-
ability of finding the particle at point x in the time interval t to t + dt? The
point is that the answer is not given by |Ψ(x, t)|2dt. The reason for this is
that, unlike the value of x at fixed t, the value of t at fixed x does not refer
to an exclusive set of alternatives. The position of a particle at fixed time is a
well-defined quantity in quantum mechanics, but the time at which a particle
is found at a fixed position is much more difficult to define because of the
possibility of multiple crossings.

This question is clearly a physically relevant one since time is measured
by physical devices that are generally limited in their precision. It is there-
fore never possible to say that a physical event occurs at a precise value of
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time, that it occurs only in some range of times. Furthermore, there has been
considerable recent experimental and theoretical interest in the question of
tunnelling times [40, 48]. This is the question: given that a particle has tun-
nelled through a barrier region, how much time did it spend inside the barrier?

Space–time questions tend to be rather non-trivial. As stressed by Hartle,
who has carried out a number of investigations in this area [35, 36, 38], time
plays a “peculiar and central role” in non-relativistic quantum mechanics. It is
not represented by a self-adjoint operator and there appears to be no obstruc-
tion to assuming that it may be measured with arbitrary precision. It enters
the Schrödinger equation as an external parameter. As such, it is perhaps best
thought of as a label referring to a classical, external measuring device, rather
than as a fundamental quantum observable. Yet time is measured by physical
systems, and all physical systems are believed to be subject to the laws of
quantum theory.

Given these features, means more elaborate than those usually employed
are required to define quantum-mechanical probabilities that do not refer to a
specific moment of time, and the issue has a long history [2, 64]. One may find
in the literature a variety of attempts to define questions of time in a quantum-
mechanical way. These include attempts to define time operators [21, 41, 59],
the use of internal physical clocks [36, 38] and path-integral approaches [14,
35, 47, 68]. The literature on tunnelling times is a particularly rich source of
ideas on this topic [40]. Many of these attempts also tie in with the time-energy
uncertainty relations [46, 50]. For a nice review of many of these issues, see [54].
All these subjects are treated in more detail in other chapters of this volume.

This chapter is concerned with the attempts to solve problems of a
space–time nature using the decoherent histories approach to quantum theory
[17, 18, 20, 57]. It is perhaps of interest to note that, in addition to inspir-
ing work on the question involving time, considerations of quantum gravity
were also partly responsible for the development of the decoherent histories
approach. For our purposes, the particular attraction of this approach is that
it directly addresses the notion of a “history” or a “trajectory” and in par-
ticular shows how to assign probabilities to them. It is therefore very suited
to the question of space–time probabilities considered here. This is because
the question of whether a particle did or did not enter a given region at any
time in a given time interval clearly cannot be reduced to a question about
the state of the particle at a fixed moment of time, but depends on the entire
history of the system during that time interval.

The decoherent histories approach, for space–time questions, turns out to
be most clearly formulated in terms of path integrals over paths in configu-
ration space [68, 35, 39]. The desired space–time amplitudes are obtained by
summing exp

(
i
�
S[x(t)]

)
, where S[x(t)] is the action, over paths x(t) passing

through the space-time region in question and consistent with the initial state.
The probabilities are obtained by squaring the amplitudes in the usual way.
(The decoherent histories approach is not inextricably tied to path integrals,
however. Operator approaches to the same questions are also available, but
are often more cumbersome.)



166 J.J. Halliwell

When computed according to the path integral scheme outlined above,
the probability of entering a space–time region added to the probability of not
entering that region is not equal to 1, in general. This is because of interference.
The question of whether a particle enters a space–time region, when carefully
broken down, is actually a quite complicated combination of questions about
the positions of the particle at a sequence of times. It is therefore, in essence,
a complicated combination of double-slit situations. Not surprisingly, there is
therefore interference and probabilities cannot be assigned.

Therefore, from the point of view of the decoherent histories approach
to quantum theory, the probability of entering a space–time region is quite
simply not defined in general for a simple point particle system due to the
presence of interference. It is here that the decoherent histories approach, like
all the other approaches to defining time in quantum theory, runs up against
its own particular brand of difficulties.

It is, however, a common feature of the decoherent histories approach
that most of the histories of interest cannot be defined due to interference –
histories defined by position at more than one time, for example. It is well
known that the interference may be removed by coupling to environment,
typically a bath of harmonic oscillators in a thermal state. We will therefore
consider the above space–time problem in the presence of an environment.

The decoherent histories approach is reviewed in Sect. 6.2 and its applica-
tion to simple space–time questions is discussed in Sect. 6.3. The inclusion of
the environment to induce decoherence is described in Sect. 6.4.

The probabilities produced by the decoherent histories approach are in
some sense somewhat abstract since they do not refer to a particular mea-
suring device. In Sect. 6.5 we therefore introduce a model measuring device
for the purposes of comparison. The decoherence model of Sect. 6.4 consists
of quite a crude environment that has, however, been very successful in pro-
ducing decoherence and emergent classicality. The measurements it effectively
carries out are of a rather robust and crucially irreversible nature. Hence the
most important sort of comparison is with an irreversible detector model.
Interestingly, most of the arrival time models discussed in the literature are
not of this type. It is therefore of interest to develop a model detector not
dissimilar to the decoherence model but sufficiently modified to carry out a
more precise measurement. The comparison between the decoherent histories
approach and the detector model is then discussed out in Sect. 6.6. This also
leads to the introduction of a third candidate for the crossing time probability,
derived from continuous quantum measurement theory.

In Sect. 6.7 we briefly discuss another type of non-trivial time question,
namely, given that a system is in an energy eigenstate, what is the probability
that it will pass through a given region in configuration space at any time?
The reason that is of interest is that it is, in essence, the question one needs to
answer in order to interpret solutions to the Wheeler–DeWitt equation (6.1).

We summarize and conclude in Sect. 6.8. An update for the second edition
is given in Sect. 6.9.



6 Decoherent Histories for Space–Time Domains 167

6.2 Decoherent Histories Approach to Quantum Theory

In this section we give a brief summary of the decoherent histories approach
to quantum theory. It has been described in considerable depth in many other
places [13, 17, 18, 20, 22, 23, 39, 42, 57].

In quantum mechanics, propositions about the attributes of a system at
a fixed moment of time are represented by sets of projection operators. The
projection operators Pα effect a partition of the possible alternatives α a sys-
tem may exhibit at each moment of time. They are exhaustive and exclusive,
as noted in (6.3) and (6.4). A projector is said to be fine-grained if it is of the
form |α〉〈α|, where {|α〉} are a complete set of states. Otherwise it is coarse-
grained. A quantum-mechanical history (strictly, a homogeneous history [42])
is characterized by a string of time-dependent projections, P 1

α1
(t1), · · ·Pn

αn(tn),
together with an initial state �. The time-dependent projections are related
to the time-independent ones by

P k
αk(tk) = eiH(tk−t0)P k

αke
−iH(tk−t0) , (6.6)

where H is the Hamiltonian. The candidate probability for these homogeneous
histories is

p(α1, α2, · · ·αn) = Tr
(
Pn
αn(tn) · · ·P 1

α1
(t1)�P 1

α1
(t1) · · ·Pn

αn(tn)
)

. (6.7)

It is straightforward to show that (6.7) is both non-negative and normalized
to unity when summed over α1, · · · , αn. However, (6.7) does not satisfy all
the axioms of probability theory, and for that reason it is referred to as a
candidate probability. It does not satisfy the requirement of additivity on
disjoint regions of sample space. More precisely, for each set of histories, one
may construct coarser-grained histories by grouping the histories together.
This may be achieved, for example, by summing over the projections at each
moment of time,

P̄ᾱ =
∑

α∈ᾱ
Pα (6.8)

(although this is not the most general type of coarse graining – see below). The
additivity requirement is then that the probabilities for each coarser-grained
history should be the sum of the probabilities of the finer-grained histories
of which it is comprised. Quantum-mechanical interference generally prevents
this requirement from being satisfied. Histories of closed quantum systems
cannot in general be assigned probabilities.

There are, however, certain types of histories for which interference is
negligible, and the candidate probabilities for histories do satisfy the sum
rules. These histories may be found using the decoherence functional:

D(α, α′) = Tr
(
Pn
αn(tn) · · ·P 1

α1
(t1)�P 1

α′
1
(t1) · · ·Pn

α′
n
(tn)

)
. (6.9)

Here α denotes the string α1, α2, · · · , αn. Intuitively, the decoherence func-
tional measures the amount of interference between pairs of histories. It may
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be shown that the additivity requirement is satisfied for all coarse grainings
if and only if

ReD(α, α′) = 0 (6.10)

for all distinct pairs of histories α, α′ [20]. Such sets of histories are said
to be consistent, or weakly decoherent. The consistency condition (6.10) is
typically satisfied only for coarse-grained histories, and this then often leads
to satisfaction of the stronger condition of decoherence,

D(α, α′) = 0 , (6.11)

for α �= α′. The condition of decoherence is associated with the existence of so-
called generalized records. This means that it is possible to add a projector Rβ
at the end of the chain such that decoherence is preserved and such that the
label β is perfectly correlated with the history alternatives α1, · · · , αn. There
is therefore in principle some physical measurement that could be carried out
at the end of the history from which complete information about the entire
history can be recovered [18, 19, 26].

For histories characterized by projections onto ranges of position at differ-
ent times, the decoherence functional may be represented by a path integral:

D(α, α′) =
∫

α

Dx

∫

α′
Dy exp

(
i

�
S[x] − i

�
S[y]

)
�(x0, y0) . (6.12)

The integral is over paths x(t), y(t) starting at x0, y0, and both ending at the
same final point xf , where xf , x0 and y0 are all integrated over and weighted
by the initial state �(x0, y0). The paths are also constrained to pass through
spatial gates at a sequence of times corresponding to the projection operators.

However, the path integral representation of the decoherence functional
also points the way towards asking types of questions that are not represented
by homogeneous histories [35]. In this article we are particularly interested in
the following question. Suppose a particle starts at t = 0 in some quantum
state. What is the probability that the particle will either cross or never cross
x = 0 during the time interval [0, τ ]? In the path integral of the form (6.12)
it is clear how to proceed. One sums over paths that either always cross or
never cross x = 0, respectively, during the time interval.

How does this look in operator language? The operator form of the deco-
herence functional is

D(α, α′) = Tr
(
Cα�C

†
α′

)
, (6.13)

where
Cα = Pαn(tn) · · ·Pα1(t1) . (6.14)

The histories that never cross x = 0 are represented by taking the projectors
in Cα to be onto the positive x-axis and then taking the limit n → ∞ and
tk − tk−1 → 0. The histories that always cross x = 0 are then represented by
the object
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C̄α = 1 − Cα . (6.15)

This is called an inhomogeneous history, because it cannot be represented as a
single string of projectors. It can however, be represented as a sum of strings
of projectors [35, 42].

The proper framework in which these operations, in particular (6.15), are
understood is the so-called generalized quantum theory of Hartle [35] and
Isham et al. [42]. It is called “generalized” because it admits inhomogeneous
histories as viable objects, whilst standard quantum theory concerns itself
entirely with homogeneous histories. We will make essential use of inhomoge-
neous histories in what follows.

In practice, for point particle systems, decoherence is readily achieved by
coupling to an environment. Here, we will use the much studied case of the
quantum Brownian motion model, in which the particle is linearly coupled
through position to a bath of harmonic oscillators in a thermal state at tem-
perature T and characterized by a dissipation coefficient γ. The details of this
model may be found elsewhere [10, 15, 22, 23].

We consider histories characterized only by the position of the particle and
the environmental coordinates are traced out. The path integral representation
of the decoherence functional then has the form

D(α, α′) =
∫

α

Dx

∫

α′
Dy exp

(
i

�
S[x] − i

�
S[y] +

i

�
W [x, y]

)
�(x0, y0) ,

(6.16)
where W [x, y] is the Feynman–Vernon influence functional phase and is given
by

W [x, y] = −mγ

∫
dt (x − y)(ẋ + ẏ) + i

2mγkT

�

∫
dt (x− y)2 . (6.17)

The first term induces dissipation in the effective classical equations of motion.
The second term is responsible for thermal fluctuations. It is also responsible
for suppressing contributions from paths x(t) and y(t) that differ widely and
produces decoherence of configuration space histories.

The corresponding classical theory is no longer the mechanics of a sin-
gle point particle, but a point particle coupled to a heat bath. The classical
correspondence is now to a stochastic process which may be described either
by a Langevin equation or by a Fokker–Planck equation for a phase-space
probability distribution w(p, x, t):

∂w

∂t
= − p

m

∂w

∂x
+ 2γ

∂(pw)
∂p

+ D
∂2w

∂p2
, (6.18)

where w ≥ 0 and ∫
dp

∫
dx w(p, x, t) = 1 . (6.19)

When the mass is sufficiently large, this equation describes near-deterministic
evolution with small thermal fluctuations about it.
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6.3 Space–Time Coarse Grainings

We are generally interested in space–time coarse grainings that consist of
asking for the probability that a particle does or does not enter a certain
region of space during a certain time interval. However, the essentials of this
question boil down to the following simpler question: What is the probability
that the particle will either cross or not cross x = 0 at any time in the time
interval [0, τ ]? We will concentrate on this question.

We briefly review the results of Yamada and Takagi [68], Hartle [35, 38, 39]
and Micanek and Hartle [52]. We will compute the decoherence functional
using the path integral expression (6.12), which may be written as

D(α, α′) =
∫

dxf Ψατ (xf )
(
Ψα

′
τ (xf )

)∗
, (6.20)

where Ψατ (xf ) denotes the amplitude obtained by summing over paths ending
at xf at time τ , consistent with the restriction α and consistent with the given
initial state, so we have

Ψατ (xf ) =
∫

α

Dx(t) exp
(

i

�
S[x]

)
Ψ0(x0) . (6.21)

Suppose the system starts out in the initial state Ψ0(x) at t = 0. The
amplitude for the particle to start in this initial state and end up at x at time
τ , but without ever crossing x = 0, is

Ψrτ (x) =
∫ ∞

−∞
dx0 gr(x, τ |x0, 0) Ψ0(x0) , (6.22)

where gr is the restricted Green function, i.e., the sum over paths that never
cross x = 0. For the free particle considered here (and also for any system with
a potential symmetric about x = 0), gr may be constructed by the method of
images:

gr(x, τ |x0, 0) = [θ(x) θ(x0) + θ(−x) θ(−x0)]
× (g(x, τ |x0, 0) − g(x, τ | − x0, 0)) , (6.23)

where g(x, τ |x0, 0) is the unrestricted propagator.
The amplitude to cross x = 0 is

Ψ cτ (x) =
∫ ∞

−∞
dx0 gc(x, τ |x0, 0) Ψ0(x0) , (6.24)

where gc(x, τ |x0, 0) is the crossing propagator, i.e., the sum over paths that
always cross x = 0. This breaks up into two parts. If x and x0 are on opposite
sides of x = 0, it is clearly just the usual propagator g(x, τ |x0, 0). If x and
x0 are on the same side of x = 0, it is given by g(−x, τ |x0, 0). This may be
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seen by reflecting the segment of the path after last crossing about x = 0 [29].
(Alternatively, this is just the usual propagator minus the restricted one.)
Hence,

gc(x, τ |x0, 0) = [θ(x)θ(−x0) + θ(−x)θ(x0)] g(x, τ |x0, 0)
+ [θ(x) θ(x0) + θ(−x)θ(−x0)] g(−x, τ |x0, 0) . (6.25)

The crossing propagator may also be expressed in terms of the so-called path
decomposition expansion, a form that is sometimes useful [4, 5, 24, 29, 62].

Inserting these expressions in the decoherence function, Yamada and Tak-
agi found that the consistency condition may be satisfied exactly by states
that are antisymmetric about x = 0. The probability of crossing x = 0 is then
0 and the probability of not crossing is 1. What is happening in this case is
that the probability flux across x = 0, which clearly has non-zero components
going both to the left and the right, averages to zero.

Less-trivial probabilities are obtained in the case where one asks for the
probability that the particle remains always in x > 0 or not, with an initial
state with support along the entire x-axis [39]. The probabilities become trivial
again, however, in the interesting case of an initial state with support only in
x > 0.

Yamada and Takagi have also considered the case of the probability of
finding the particle in a space–time region [68]. That is, the probability that
the particle enters or does not enter the spatial interval Δ, at any time during
the time interval [0, t]. Again the consistency condition is satisfied only for
very special initial states and the probabilities are then rather trivial.

In an attempt to assign probabilities for arbitrary initial states, Micanek
and Hartle considered the above results in the limit that the time interval [0, τ ]
becomes very small [52]. Such an assignment must clearly be possible in the
limit τ → 0. They found that both the off-diagonal terms of the decoherence
functional D and the crossing probability p are of order ε = (�t/m)

1
2 for small

t, and the probability p̄ for not crossing is of order 1. Hence p + p̄ ≈ 1. They
therefore argued that probabilities can be assigned if t is sufficiently small.
On the other hand, we have the exact relation,

p + p̄ + 2ReD = 1 . (6.26)

ReD represents the degree of fuzziness in the definition of the probabilities.
Since it is of the same order as p̄, one may wonder whether it is then valid
to claim approximate consistency. Another condition that may be relevant is
the condition

|D|2 << pp̄ , (6.27)

which was suggested in [13] as a measure of approximate decoherence, and is
clearly satisfied in this case.

We conclude from these various studies that for a system consisting of a
single point particle, crossing probabilities can be assigned to histories only
in a limited class of circumstances.
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There is one particularly important case in which this lack of probability
assignment is perhaps unsettling. Consider a wave packet that starts at x0 > 0
moving towards the origin. The amplitude for not crossing is given by the
restricted amplitude (6.22) and the restricted propagator (6.23). However, in
the case where the centre of the wave packet reaches the origin during the
time interval, it is easily seen from the propagator (6.23) that after hitting
the origin there is a piece of the wave packet that is reflected back into x > 0
(this is the image wave packet has come from x < 0). This means that we have
the counterintuitive result that the probability for remaining in x > 0 is not
in fact close to zero [35, 67] as one would expect. It is unsettling because one
sometimes thinks of wave packets as being the closest thing quantum theory
has to a classical path, yet the behaviour of the wave packet in this case is
utterly different to the corresponding expected classical behaviour.

Although counterintuitive, it is not that disturbing, since with this initial
state, the histories for crossing and not crossing do not satisfy the consistency
condition, so we should not expect them to agree with our physical intuition.
Still, it would be reassuring to see that the formalism set up so far yields
the intuitively expected classical limit under appropriate circumstances. To
obtain that, we need a decoherence mechanism, and this we now consider.

6.4 Decoherence of Space–Time Coarse-Grained
Histories in the Quantum Brownian Motion Model

We have seen that crossing probabilities can be assigned in the decoherent
histories approach only for very special initial states, and furthermore, we do
not get an intuitively sensible classical limit for wave packet initial states.
It is, however, well known that most sets of histories of interest do not in
fact exhibit decoherence without the presence of some physical mechanism to
produce it. In this section, we therefore discuss a modified situation consisting
of a point particle coupled to a bath of harmonic oscillators in a thermal state.
This model, the quantum Brownian motion model [1], produces decoherence
of histories of positions in a variety of situations.

This explicit modification of the single particle system means that the
corresponding classical problem (to which the quantum results should reduce
under certain circumstances) is in fact a stochastic process described by either
a Langevin equation or by a Fokker–Planck equation. It is therefore appropri-
ate to first study the crossing problem in the corresponding classical stochastic
process (see e.g. [63, 8, 9, 51, 69], and references therein).

6.4.1 The Crossing Time Problem in Classical Brownian Motion

Classical Brownian motion may be described by the Fokker–Planck equation
(6.18) for the phase-space probability distribution w(p, x, t). For simplicity we
will work in the limit of negligible dissipation, hence the equation is
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∂w

∂t
= − p

m

∂w

∂x
+ D

∂2w

∂p2
, (6.28)

where D = 2mγkT . The Fokker–Planck equation is to be solved subject to
the initial condition

w(p, x, 0) = w0(p, x) . (6.29)

Consider now the crossing time problem in classical Brownian motion.
The question is this. Suppose the initial state is localized in the region x > 0.
What is the probability that, under evolution according to the Fokker–Planck
equation (6.28), the particle either crosses or does not cross x = 0 during the
time interval [0, τ ]?

A useful way to formulate space–time questions of this type is in terms
of the Fokker–Planck propagator, K(p, x, τ |p0, x0, 0). The solution to (6.28)
with the initial condition (6.29) may be written in terms of K as

w(p, x, τ) =
∫ ∞

−∞
dp

∫ ∞

−∞
dx K(p, x, τ |p0, x0, 0) w0(p, x) . (6.30)

The Fokker–Planck propagator satisfies the Fokker–Planck equation (6.28)
with respect to its final arguments and satisfies delta function initial condi-
tions,

K(p, x, 0|p0, x0, 0) = δ(p− p0) δ(x− x0) . (6.31)

For the free particle without dissipation, it is given explicitly by

K(p, x, τ |p0, x0, 0) = N exp
[
−α(p− p0)2 − β

(
x− x0 −

p0τ

m

)2

+ ε(p− p0)(x− x0 −
p0τ

m
)
]

, (6.32)

where N , α, β and ε are given by

α =
1

Dτ
, β =

3m2

Dτ3
, ε =

3m
Dτ2

, N =
(

3m2

4πD2τ4

) 1
2

(6.33)

(with D = 2mγkT ). An important property it satisfies is the composition law

K(p, x, τ |p0, x0, 0) =
∫ ∞

−∞
dp1

∫ ∞

−∞
dx1 K(p, x, τ |p1, x1, t1)

K(p1, x1, t1|p0, x0, 0) , (6.34)

where τ > t1 > 0.
For our purposes, the utility of the Fokker–Planck propagator is that it

may be used to assign probabilities to individual paths in phase space. Divide
the time interval [0, τ ] into subintervals, t0 = 0, t1, t2, · · · , tn−1, tn = τ . Then
in the limit that the subintervals go to zero, and n → ∞ but with τ held
constant, the quantity
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n∏

k=1

K(pk, xk, tk|pk−1, xk−1, tk−1) (6.35)

is proportional to the probability for a path in phase space. The probability for
various types of coarse-grained paths (including space–time coarse grainings)
can therefore be calculated by summing over this basic object.

We are interested in the probability wr(pn, xn, τ) that the particle follows
a path that always remains in the region x > 0 during the time interval
[0, τ ] and ends at the point xn > 0 with momentum pn. The desired total
probabilities for crossing or not crossing can then be constructed from this
object. wr is clearly given by the continuum limit of the expression

wr(pn, xn, τ) =
∫ ∞

0

dxn−1 · · ·
∫ ∞

0

dx1

∫ ∞

0

dx0

∫ ∞

−∞
dpn−1 · · ·

∫ ∞

−∞
dp1

∫ ∞

−∞
dp0

×
n∏

k=1

K(pk, xk, tk|pk−1, xk−1, tk−1) w0(p0, x0) . (6.36)

Now it is actually more useful to derive a differential equation and bound-
ary conditions for wr(p, x, τ), rather than attempt to evaluate the above mul-
tiple integral. First of all, it is clear from the properties of the propagator that
wr(p, x, τ) satisfies the Fokker–Planck equation (6.28) and the initial condi-
tion (6.29). However, we also expect some sort of condition at x = 0. From the
explicit expression for the propagator (6.32), (6.33), we see that in the con-
tinuum limit, the propagator between pn−1, xn−1 and the final point pn, xn
becomes proportional to the delta function

δ (xn − xn−1 − pnτ/m) . (6.37)

Since xn−1 ≥ 0, when xn = 0 this delta function will give zero when pn > 0,
but could be non-zero when pn < 0. Hence we deduce that the boundary
condition on wr(p, x, t) is

wr(p, 0, t) = 0, if p > 0 . (6.38)

This is the absorbing boundary condition usually given for the crossing time
problem [51, 65] (although this argument for it does not seem to have appeared
elsewhere).

It is now convenient to introduce a restricted propagator Kr(p, x, τ |
p0, x0, 0), which propagates wr(p, x, τ). That is, Kr satisfies the delta func-
tion initial conditions (6.38) and the same boundary conditions as wr, (6.38).
Since the original Fokker–Planck equation is not invariant under x → −x, we
cannot expect that a simple method of images (of the type used in Sect. 6.3)
will readily yield the restricted propagator Kr. Kr has recently been found
[9], using a modified method of image technique due to Carslaw [12], and we
briefly summarize those results.
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First consider the usual Fokker–Planck propagator (6.32). Introducing the
coordinates

X =
p

m
− 3x

2τ
, Y =

√
3x

2τ
, (6.39)

X0 = − p0

2m
− 3x0

2τ
, Y0 =

√
3

2

(p0

m
+

x0

τ

)
, (6.40)

the propagator (6.32) becomes

K =
√

3
2πt̃2

exp
(
− (X −X0)2

t̃
− (Y − Y0)2

t̃

)
. (6.41)

Here, t̃ = Dτ/m2. Now go to polar coordinates,

X = r cos θ, Y = r sin θ , (6.42)
X0 = r′ cos θ′, Y0 = r′ sin θ′ . (6.43)

Then from (6.43), it is possible to construct a so-called multiform Green func-
tion [12],

g(r, θ, r′, θ′) =
√

3
2π3/2 t̃2

exp
(
−r2 + r′2 − 2rr′ cos(θ − θ′)

t̃

) ∫ a

−∞
dλ e−λ

2
,

(6.44)
where

a = 2
(
rr′

t̃

) 1
2

cos
(
θ − θ′

2

)
. (6.45)

Like the original Fokker–Planck propagator, this object is a solution to the
Fokker–Planck equation with delta function initial conditions, but differs in
that it has the property that it is defined on a two-sheeted Riemann surface
and has period 4π. The desired restricted propagator Kr is then given by

Kr(p, x, τ |p0, x0, 0) = g(r, θ, r′, θ′) − g(r, θ, r′,−θ′) . (6.46)

The point x = 0 for p > 0 is θ = 0 in the new coordinates, and the above
object indeed vanishes at θ = 0. Furthermore, the second term in the above
goes to zero at τ = 0, whilst the first one goes to a delta function as required.

The probability of not crossing the surface during the time interval [0, t]
is then given by

pr =
∫ ∞

−∞
dp

∫ ∞

0

dx

∫ ∞

−∞
dp0

∫ ∞

0

dx0 Kr(p, x, τ |p0, x0, 0) w0(p0, x0) . (6.47)

The probability of crossing must then be pc = 1−pr, which can also be written
as

pc =
∫ 0

−∞
dp

∫ ∞

−∞
dp0

∫ ∞

0

dx0
p

m
Kr(p, x = 0, τ |p0, x0, 0) w0(p0, x0) . (6.48)

This completes the discussion of the classical stochastic problem.
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6.4.2 The Crossing Time Problem in Quantum Brownian Motion

We now consider the analogous problem in the quantum case. We therefore
attempt to repeat the analysis of Sect. 6.3, but using instead of (6.18) the
decoherence functional appropriate to the quantum Brownian motion model.
It may be written as

D(α, α′) = Tr (�αα′) , (6.49)

where

�αα′(xf , yf) =
∫

α

Dx

∫

α′
Dy exp

(
i

�
S[x] − i

�
S[y] +

i

�
W [x, y]

)
�0(x0, y0) .

(6.50)
Here, W [x, y] is the influence functional phase (6.5), but with the dissipation
term neglected. The sum is over all paths x, y, which are consistent with the
coarse graining α, α′, and end at the final points xf , yf .

We will concentrate on the case in which the initial density operator has
support only on the positive axis, and we ask for the probability that the
particle either crosses or never crosses x = 0 during the time interval [0, τ ].
The history label α takes two values, which we denote α = c and α = r for
crossing and not crossing respectively.

The objects �αα′ defined in (6.50) actually obey a master equation,

i�
∂�

∂t
= − �

2

2m

(
∂2�

∂x2
− ∂2�

∂y2

)
− i

�
D(x− y)2� . (6.51)

This is the usual master equation for the evolution of the density operator of
quantum Brownian motion [10]. The objects �αα′ are then found by solving
this equation subject to matching the initial state �0, and also to the following
boundary conditions (which follow from the path integral representation):

�rr(x, y) = 0, for x ≤ 0 and y ≤ 0 , (6.52)
�rc(x, y) = 0, for x ≤ 0 , (6.53)
�cr(x, y) = 0, for y ≤ 0 . (6.54)

Given �rr, �rc, �cr, the quantity �cc may be calculated from the relation

�rr + �rc + �cr + �cc = � . (6.55)

In the unitary case, this problem was solved very easily using the method
of images. The problem in the non-unitary case treated here, however, is that
the master equation is not invariant under x → −x (or under y → −y),
hence �(−x, y) and �(x,−y) are not solutions to the master equation. The
method of images is therefore not applicable in this case (contrary to the claim
in [35]). As far as an analytic approach goes, this represents a very serious
technical problem. Restricted propagation problems are very hard to solve
analytically in the absence of the method of images. However, the presence of
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the decohering environment allows for an approximate solution of the problem.
This is described in detail in [32]. The results are intuitively clear and we
summarize them here.

First of all, decoherence of position histories in this model is extremely
good, so �rc ≈ 0, �cr ≈ 0. We may therefore assign probabilities for not
crossing and for crossing, and these are equal to Tr�rr and Tr�cc respectively.
To see what these probabilities are, we make use of the Wigner representation
of the density operator [6]:

W (p, x) =
1

2π�

∫ ∞

−∞
dξ e−

i
�
pξ �(x +

ξ

2
, x− ξ

2
) . (6.56)

The Wigner representation is very useful in studies of the master equation,
since it is similar to a classical phase-space distribution function. Indeed,
for quantum Brownian motion model with a free particle, the Wigner func-
tion obeys the same Fokker–Planck equation (6.28) as the analogous classical
phase-space distribution function. What makes it fail to be a classical phase
space distribution is that it can take negative values. However, it can be shown
that the Wigner function becomes positive after a short time (typically the
decoherence time), and numerous authors have discussed its use as an approx-
imate classical phase-space distribution, under these conditions [31].

Given approximate decoherence, it was shown at some length in [32] using
the path integral (6.50) that the Wigner transform of �rr is given by

Wrr(mẊf , Xf ) =
∫

r

DX exp
(
− m

8γkT

∫
dtẌ2

)
W0(mẊ0, X0) , (6.57)

where the functional integral over X(t) is over paths that lie in X > 0 and
match Xf and Ẋf at the final time. If the paths X(t) were not restricted,
(6.57) would in fact be a path integral representation of the Fokker–Planck
propagator (6.32) [44]. With the restriction X > 0, it may be shown that it is
a representation of the restricted Fokker–Planck propagator (6.46) or (6.36).

It then follows that the probabilities for not crossing and for crossing x = 0
are given, to a good approximation, by the classical stochastic results (6.47),
(6.48), with the classical phase-space distribution function w0 replaced by the
initial Wigner function W0 in the quantum case. This result is the expected
and intuitively obvious one, although as outlined in [32], it is a non-trivial
matter to show that the boundary conditions on �αα′ in the quantum case
reduce to the boundary conditions on W appropriate to the classical stochastic
problem.

6.4.3 Properties of the Solution

Some simple properties of our results may be seen by examining the path inte-
gral form of the solution (6.57). The important case to consider is the motion
of a wave packet, since this is the situation that gave problematic results in
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Sect. 6.3. We take an initial state consisting of a wave packet concentrated at
some x > 0, and moving towards the origin. We are interested in the proba-
bility of whether it will cross x = 0 or not during some time interval, under
the evolution by the path integral (6.57).

The integrand in (6.57) is peaked about the unique path for which Ẍ = 0
with the prescribed values of X0 and Ẋ0. This is of course the classical path
with the prescribed initial data. From (6.57), the spatial width (ΔX)2 of the
peak is of order γkT/(mτ3). If the classical path does not cross x = 0 and
approaches x = 0 no closer than a distance ΔX during the time interval, then
it will lie well within the integration range X > 0, and the propagation is
essentially the same as unrestricted propagation, since the dominant contri-
bution to the integral comes from the region X > 0. It is then easy to see,
from the normalization of the Wigner function, that the probability of not
crossing is approximately 1, the intuitively expected result.

If the classical path crosses x = 0 during the time interval, it will lie outside
the integration range of X for time slices after the time at which it crossed.
If it crosses sufficiently early that an entire wave packet of width ΔX may
enter x < 0 before time τ , then the functional integration will sample only
the exponentially small tail of the integrand, so Wrr will be very small. The
probability of not crossing will therefore be close to zero, again the intuitively
expected result.

The inclusion of the environment therefore restores the intuitively sensible
classical limit to the quantum case of Sect. 6.3.

In the above simple examples, the crossing probabilities are independent
of the details of the environment, to a leading order approximation. It is clear
that in a more precise expression, the crossing probabilities will in fact depend
on the features of the environment (e.g., its temperature). One might find this
slightly unsettling, at least in comparison to quantum-mechanical probabilities
at a fixed moment of time, which depend only on the state at that time and
not on the details of how the property in question might be measured. This
is in keeping with an opinion sometimes expressed on questions of time in
quantum mechanics – that to specify times one has to specify the physical
mechanism by which it is measured [48].

6.5 A Detector Model

Although the results of the previous sections produced mathematically viable
candidates for the probabilities of crossing and not crossing x = 0, it is by
no means clear how they correspond to a particular type of measurement. As
noted in Sect. 6.2, general theorems exist showing that decoherence of histories
implies the existence at the final end of the histories of a record storing the
information about the decohered histories [18, 19]. This means that there
is some quantity at a fixed moment of time, which is correlated with the
property of crossing or not crossing x = 0 during the time interval [0, τ ] and



6 Decoherent Histories for Space–Time Domains 179

which could in principle be measured. Records associated with decoherence
have, however, been explicitly found only in a few simple cases (see e.g., [26]).
For these reasons, it is of interest to compare the approaches involving the
decoherent histories approach with a completely different approach involving
a specific model of a detector.

We therefore introduce, following [27], a detector model that is coupled to
the particle in the region x < 0, and such that it undergoes a transition when
the coupling is switched on. Such detectors have certainly been considered
before (see, e.g., [3]). The particle could, for example, be coupled to a simple
two-level system that flips from one level to the other when the particle is
detected. One of the difficulties of many detector models, however, is that if
they are modelled by unitary quantum mechanics, the possibility of the reverse
transition exists. Because quantum mechanics is fundamentally reversible, the
detector could return to the undetected state under its self-dynamics, even
when the particle has interacted with it.

To get around this difficulty, we appeal to the fact that realistic detectors
have a very large number of degrees of freedom, and are therefore effectively
irreversible. They are designed so that there is an overwhelming large proba-
bility for them to make a transition in one direction rather than its reverse.
We consider a simple model detector that has this property. This is achieved
by coupling a two-level system detector to a large environment, which makes
its evolution effectively irreversible.

The detector is a two-level system, with levels |1〉 and |0〉, representing the
states of no detection and detection, respectively. Introduce the raising and
lowering operators

σ+ = |1〉〈0|, σ− = |0〉〈1| , (6.58)

and let the Hamiltonian of the detector be Hd = 1
2�ωσz, where

σz = |1〉〈1| − |0〉〈0| , (6.59)

so |0〉 and |1〉 are eigenstates of Hd with eigenvalues − 1
2�ω and 1

2�ω, respec-
tively. We would like to couple the detector to a free particle in such a way
that the detector makes an essentially irreversible transition from |1〉 to |0〉 if
the particle enters x < 0, and remains in |1〉 otherwise. This can be arranged
by coupling the detector to a large environment of oscillators in their ground
state, with a coupling proportional to θ(−x). This means that if the particle
enters the region x < 0, the detector becomes coupled to the large environ-
ment causing it to undergo a transition. Since the environment is in its ground
state, if the detector initial state is the higher energy state |1〉 it will, with
overwhelming probability, make a transition from |1〉 to the lower energy state
|0〉. A possible Hamiltonian describing this process for the three-component
system is

H = Hs + Hd + HE + V (x)HdE , (6.60)

where the first three terms are the Hamiltonians of the particle, detector
and environment, respectively, and HdE is the interaction Hamiltonian of the
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detector and its environment. The simplest choice of environment is a collec-
tion of harmonic oscillators,

HE =
∑

n

�ωna
†
nan , (6.61)

and we take the coupling to the detector to be via the interaction

HdE =
∑

n

�
(
κ∗
nσ−a†n + κnσ+an

)
. (6.62)

An environment consisting of an electromagnetic field, for example, would
give terms of this general form. V (x) is a potential concentrated in x < 0
(and we will eventually make the simplest choice, V (x) = θ(−x), but for
the moment we keep it more general). The important feature is that the
interaction between the detector and its environment, causing the detector to
undergo a transition, is switched on only when the particle is in x < 0.

A similar although more elaborate model particle detector has been pre-
viously studied by Schulman [60] (see also [61]). The advantage of the present
model is that it is easier to solve explicitly.

We are interested in the reduced dynamics of the particle and the detector
with the environment traced out. Hence we seek a master equation for the
reduced density operator � of the particle and the detector. With the above
choices for HE and HdE , the derivation of the master equation is standard
[11, 16] and will not be repeated here. There is the small complication of the
factor of V (x) in the interaction term, but this is readily accommodated. We
assume a factored initial state, and we assume that the environment starts out
in the ground state. In a Markovian approximation (essentially the assumption
that the environment dynamics is much faster than the detector or the particle
dynamics) and in the approximation of weak detector–environment coupling,
the master equation is

�̇ = − i

�
[Hs+Hd, �]−

γ

2
(
V 2(x)σ+σ−� + �σ+σ−V 2(x) − 2V (x)σ−�σ+V (x)

)
.

(6.63)
Here, γ is a phenemonological constant determined by the distribution of os-
cillators in the environment and underlying coupling constants. The frequency
ω in Hd is also renormalized to a new value ω′.

Equation (6.63) is the sought-after description of a particle coupled to an
effectively irreversible detector in the region x < 0. In the dynamics of the
detector plus environment only (i.e., with V = 1 and Hs = 0), it is readily
shown that every initial state tends to the state |0〉〈0| on a timescale γ−1.
With the particle coupled in, if the initial state of the detector is chosen to be
|1〉〈1|, it undergoes an irreversible transition to the state |0〉〈0| if the particle
enters x < 0, and remains in its initial state otherwise.

Equation (6.63) is in fact of the Lindblad form (the most general Marko-
vian master equation preserving density operator properties [49]). A similar
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detection scheme based on a postulated master equation similar to (6.63) was
previously considered in [43].

The master equation (6.63) is easily solved by writing

� = �11 ⊗ |1〉〈1| + �01 ⊗ |0〉〈1| + �10 ⊗ |1〉〈0| + �00 ⊗ |0〉〈0| . (6.64)

We suppose that the particle starts out in an initial state |Ψ0〉, hence the
master equation is to be solved subject to the initial condition,

�(0) = |Ψ0〉〈Ψ0| ⊗ |1〉〈1| . (6.65)

The probability that the detector does not register during [0, τ ] is

pnd = Tr�11 =
∫ ∞

−∞
dx �11(x, x, τ) , (6.66)

and the probability that it registers is

pd = Tr�00 =
∫ ∞

−∞
dx �00(x, x, τ) (6.67)

(where the trace is over the particle Hilbert space). Clearly pnd+pd = 1, since
Tr� = 1.

The explicit solution to the master equation is straightforward and was
carried out in [27]. There, it was shown that, when V (x) = θ(−x), the solution
for �11 may be written as

�11(t) = exp
(
− i

�
Hst−

γ

2
V t

)
�11(0) exp

(
i

�
Hst−

γ

2
V t

)
. (6.68)

What is particularly interesting about this expression is that it can be factored
into a pure state. Let �11 = |Ψ〉〈Ψ |. Then, noting that �11(0) = |Ψ0〉〈Ψ0|, (6.68)
is equivalent to

|Ψ(t)〉 = exp
(
− i

�
Hst−

γ

2
V t

)
|Ψ0〉 . (6.69)

The probability for no detection is then

pnd =
∫ ∞

−∞
dx |Ψ(x, τ)|2 . (6.70)

The pure state (6.69) evolves according to a Schrödinger equation with an
imaginary contribution to the potential, − 1

2 i�γV . Complex potentials of pre-
cisely this type have been used previously in studies of arrival times, as
phenomenological devices, to imitate absorbing boundary conditions (see,
e.g., [2, 55, 58]). Here, the appearance of a complex potential is derived from
the master equation of a particle coupled to an irreversible detector, which
in turn may be derived from the unitary dynamics of the combined particle–
detector–environment system.
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In summary, this detector model nicely reproduces earlier phenomenologi-
cal results on arrival times. In [56] it is also shown that the expression (6.69),
(6.70), is very closely related to the “ideal” arrival time distribution of Ki-
jowski [45]. An improved, more physically realistic irreversible detector model
(although more difficult to solve analytically) was recently put forward by
Muga et al. [54], see Chap. 8.

6.6 A Comparison of the Decoherent Histories Result
with the Detector Result

We may now compare the two candidate expressions for the crossing time
probabilities, one from decoherent histories with an environment and the other
from an irreversible detector model. We will quickly see that the two results
are not in fact very close, but it is perhaps of interest to see exactly why and
how they may be improved.

We first massage the decoherent histories result into a more suitable form.
Consider the probability for remaining in x > 0. From (6.50) it is given by

pr =
∫

r

dx(t)
∫

r

dy(t) exp
(

i

�
S[x(t)] − i

�
S[y(t)]

)

× exp
(
−a

∫
dt (x− y)2

)
�0(x0, y0) , (6.71)

where a = D/�
2. Following [32], we make the observation that the last expo-

nential may be deconvolved:

exp
(
−a

∫
dt (x− y)2

)
=
∫

Dx̄ exp
(
−2a

∫
dt (x − x̄)2 −2a

∫
dt (y − x̄)2

)
.

(6.72)
Hence, assuming a pure initial state, the probability (6.71) may be written as

pr =
∫

dx̄(t)
∫

r

dx(t) exp
(

i

�
S[x(t)] − 2a

∫
dt (x− x̄)2

)
Ψ0(x0)

×
∫

r

dy(t) exp
(
− i

�
S[y(t)] − 2a

∫
dt (y − x̄)2

)
Ψ∗

0 (y0) . (6.73)

In these integrals, x̄(t) is integrated over an infinite range, but x(t) and y(t)
are integrated only over the positive real line. This restriction is quite difficult
to implement in practice [32]. However, because of the exponential factors,
negative values of x̄(t) are strongly suppressed, so we may take its range
to be over positive values only, with exponentially small error. Furthermore,
having done this we may then (for technical simplicity) allow the range of x(t)
and y(t) to be over the entire real line, again with exponentially small error.
Therefore, we have that
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pr ≈
∫

r

dx̄(t)
∫

dx(t) exp
(

i

�
S[x(t)] − 2a

∫
dt (x− x̄)2

)
Ψ0(x0)

×
∫

dy(t) exp
(
− i

�
S[y(t)] − 2a

∫
dt (y − x̄)2

)
Ψ∗

0 (y0) . (6.74)

This may finally be written as

pr ≈
∫

r

dx̄(t) 〈Ψx̄|Ψx̄〉 , (6.75)

where

Ψx̄(xf , τ) =
∫

dx(t) exp
(

i

�
S[x(t)] − 2a

∫
dt (x− x̄)2

)
Ψ0(x0) . (6.76)

Written in this way the probability has a natural interpretation in terms of
continuous quantum measurement. Equation (6.76) is the wave function for a
system undergoing continuous measurement of its position along a trajectory
x̄(t) to within a precision proportional to a−

1
2 . The probability for any such

trajectory is 〈Ψx̄|Ψx̄〉, hence the probability to remain in the region x > 0 is
obtained by integrating over x̄(t) > 0. The probability (6.71), derived from the
decoherent histories approach, is therefore, to an excellent approximation, the
same as the result naturally obtained from continuous quantum measurement
theory.

Now we compare with the detector model. The probability for no detection
is computed from the wave function (6.69). In a path integral representation,
this may be written as

Ψnd(x,τ) =
∫

Dx(t) exp
(

i

�
S[x(t)] − γ

2

∫ τ

0

dt V (x(t))
)

Ψ0(x0) . (6.77)

The sum is over all paths x(t) connecting x0 at t = 0 to xf at t = τ . The
probability for no detection is then quite simply

pnd = 〈Ψnd|Ψnd〉 . (6.78)

Whilst the two different expressions, (6.75), (6.76), versus (6.77), (6.78), are
similar in some ways, they are not obviously close and suffer from a rather
key difference. Equation (6.75) is obtained by summing the probability for any
path x̄(t) over positive values of x̄. In (6.77) and (6.78), by contrast, the re-
striction to paths in x > 0 is already imposed in the amplitude. The difference
between the probabilities provided by the detector and those provided by the
decoherent histories approach is, therefore, the difference between summing
amplitudes and squaring versus squaring and then summing.

In the decoherent histories approach, the coupling to the environment
produces an effective measurement of the system that is much finer than is
required for the crossing time problem. It effectively measures the entire tra-
jectory, which is clearly much more information than is required to determine
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whether or not the particle enters x < 0. In this sense this particular decoher-
ent histories model is much cruder than the detector model, since it destroys
far more interference than it really needs to in order to define the crossing
time. This is due to the form of the particle–environment coupling, which is
linear in the particle’s position. It would be of interest to explore a decoherent
histories model with a more refined type of coupling, which is more specifically
geared to the crossing time problem.

It is of interest to note that continuous quantum measurement theory in
fact suggests another candidate expression for the probability of not crossing,
which is closer to the detector model. Suppose that before squaring, we sum
the amplitude (6.76) over positive x̄(t):

Ψ+(xf , τ) =
∫

dx(t) exp
(

i

�
S[x(t)]

)

×
∫

r

dx̄(t)
(
−2a

∫
dt (x− x̄)2

)
Ψ0(x0) . (6.79)

The probability is then
p+ = 〈Ψ+|Ψ+〉 . (6.80)

This expression for the probability of not entering x < 0 is completely natural
from the point of view of continuous quantum measurement theory. It does
not follow from either the detector model or the decoherent histories approach
presented here, but one can regard it as yet another proposal with which to
define the arrival time probability. The amplitude (6.79) is now more closely
analogous to the detector result (6.77). To see this, introduce the effective
potential Veff (x) defined by

exp
(
−
∫

dt Veff (x(t))
)

=
∫

r

dx̄(t)
(
−2a

∫
dt (x− x̄)2

)
. (6.81)

The integral can be evaluated exactly, but it is clear that Veff (x) ∼ 0 for
x >> 0, and Veff (x) ∼ 2ax2 for x << 0. Equation (6.79) therefore has the
same general form as (6.77). The potential is not exactly the same, but has
the same physical effect, which is to suppress paths in x < 0.

6.7 Timeless Questions in Quantum Theory

We now briefly consider a related question in quantum theory that involves
time in a non-trivial way, which is in fact more closely related to the Wheeler–
DeWitt equation of quantum cosmology, (6.1). This equation may be thought
of as the statement that the wave function of the system is in an energy
eigenstate. As stated in Sect. 6.1, the equation contains no notion of time,
and indeed “time” and the notion of trajectories are thought to somehow
emerge from the wave function. To test this idea, and hence to provide some
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sort of interpretation for the wave function, we need to find an answer to
the question, “What is the probability associated with a given region Δ of
configuration space when the system is in an energy eigenstate, without any
reference to time?”

Classically, the question is well defined. A system with fixed energy consists
of a set of classical trajectories, perhaps with some probability distribution
on them. The classical trajectories are just curves in configuration space, and
the question is then quite simply one of determining whether or not these
curves intersect the given region Δ. But, like the arrival time problem in non-
relativistic quantum mechanics, the problem is considerably harder to phrase
in quantum theory.

To see the beginnings of the difficulties, we briefly consider the following
simple question for a two-dimensional system with coordinates x1, x2: given
that the system is in an energy eigenstate, what is the value of x1 given
the value of x2? Slightly rephrased, what is the probability that the system
intersects the surface x2 = constant between x1 and x1 + dx1, at any time?
An operator approach to the problem, for example, takes the following form.
For a free particle, the classical trajectories are

x1(t) = x1 +
p1t

m
, x2(t) = x2 +

p2t

m
(6.82)

and we may eliminate t between them to write

x1(t) = x1 +
p1

p2
(x2(t) − x2) . (6.83)

This is the classical answer to the question, what is the value of x1 at a given
value of x2? One may attempt to raise this to the status of an operator in the
quantum theory. It commutes with the free particle Hamiltonian,

H =
1
2
(p2

1 + p2
2) , (6.84)

so is in this sense an observable of the theory – measuring it will not dis-
place the system from an energy eigenstate of H . This approach encounters
problems, however, in defining (6.83). It cannot be made into a self-adjoint
operator, due to the presence of the 1/p2 factor. In this way it is very similar
to the problem of defining a time operator.

We will not pursue this approach any further here. Instead we briefly report
on two other approaches, which, exactly like the approaches described in this
article, use decoherent histories, or a detector model.

The decoherent histories approach to the question involves summing over
paths, in configuration space, which either enter or do not enter a given region
Δ at any moment of time. In practice this is achieved by summing over paths,
which either enter or do not enter during a fixed time interval [0, τ ], and then
summing τ over an infinite range. The detailed construction of this is described
in [30]. As in the crossing time problem described in Sect. 6.4, a decohering
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environment is required to make the probabilities well-defined, and we then
expect the final result to be a reasonably simple formula involving the Wigner
function, closely analogous to the classical case. The full details of this have
yet to be worked out, but is perhaps useful to give the classical result here
(which, although well-defined, is not totally trivial).

We consider a 2n-dimensional phase space with coordinates p,x. Denote
the classical trajectories by xcl(t), and suppose that they match the initial
data p0,x0 at some fiducial initial point t = t0 (which is arbitrary). For a free
particle,

xcl(t) = x0 +
p0

m
(t− t0) . (6.85)

Let fΔ(x) be a characteristic function for the region Δ so is 1 inside Δ and
0 outside. We suppose that the classical system is described by a phase-space
distribution function w(p,x). To be a true analogue of an energy eigenstate
in the quantum case, w has to be stationary, so

w(p(t),x(t)) = w(p(t + t1),x(t + t1)) (6.86)

for any t1.
We may now write down the probability for a classical trajectory entering

the region Δ. It is

pΔ =
∫

dnp0d
nx0 w(p,x) θ

(∫ ∞

−∞
dt fΔ(xcl(t)) − ε

)
. (6.87)

Here, ε is a small parameter, which is taken to zero through positive values,
and is present to avoid ambiguities in the θ function at zero argument. The
integral inside the θ function is the total time spent by the trajectory xcl(t)
inside the region Δ, but we are only interested in whether this time is positive
or zero. The initial data p0,x0 are therefore effectively integrated only over
values for which the trajectory spends a time in excess of ε in the region Δ.
It is easy to see that the whole construction is invariant under shifting the
fiducial point t0. This is the analogue of reparametrization invariance (or more
generally, diffeomorphism invariance) in the Wheeler–DeWitt equation (6.1).
It is expected that a decoherent histories analysis will yield a result of the
approximate form (6.87) (with w replaced by the Wigner function).

Another approach to the question posed at the beginning of this section
is to use a detector model (this is described in detail in [28]). The detector
model arises from Barbour’s observation [7] that a substantial insight into
the Wheeler–DeWitt equation may be found in Mott’s 1929 analysis of alpha-
particle tracks in a Wilson cloud chamber [53]. Mott’s paper concerned the
question of how the alpha-particle’s outgoing spherical wave state, eikR/R,
could lead to straight line tracks in a cloud chamber. His explanation was to
model the cloud chamber as a collection of atoms that may be ionized by the
passage of the alpha-particle. They therefore act as detectors that measure
the alpha-particle’s trajectory. The probability that certain atoms are ionized
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is indeed found to be strongly peaked when the atoms lie along a straight line
through the point of origin of the alpha-particle.

Mott had in mind a time-evolving process, but he actually solved the time-
independent equation

(H0 + Hd + λHint) |Ψ〉 = E|Ψ〉 . (6.88)

Here H0 is the alpha-particle Hamiltonian, Hd is the Hamiltonian for the
ionizing atoms and Hint describes the Coulomb interaction between the alpha-
particle and the ionizing atoms (where λ is a small coupling constant). Now
the interesting point, as Barbour notes, is that Mott derived all the physics
from this equation with little reference to time. Mott’s calculation is therefore
an excellent model for many aspects of the Wheeler–DeWitt equation. In
[28] a model of this type is considered with a series of detectors, and it is
shown how to produce a plausible formula for the probability that the system
enters a series of regions in configuration space without reference to time. A
comparison of this approach with the anticipated decoherent histories result
(6.87) is yet to be carried out.

6.8 Discussion

We have reviewed a number of approaches to the crossing time problem in
non-relativistic quantum theory, primarily using the decoherent histories ap-
proach. We have also briefly reviewed some attempts to extend these ideas to
models more closely related to the Wheeler–DeWitt equation. On the face of
it, the decoherent histories approach appears to be particularly well adapted
to this problem, since it naturally incorporates the notion of trajectory, and
hence readily accommodates questions of a non-trivial temporal nature. Hav-
ing said that, however, good expressions for the crossing time probability are
not acquired very easily.

As described in Sect. 6.3, the decoherence or consistency conditions are
satisfied only for very special classes of initial states. For a system consisting
of a single point particle, therefore, the decoherent histories approach does not
supply an answer to the crossing time problem for arbitrary initial states. This
is rectified by the inclusion of a thermal environment, as described in Sect. 6.4,
and probabilities for the crossing time can then be obtained for arbitrary initial
system states. They do, however, depend to some extent on the environment
producing the decoherence, and moreover, they are essentially the same as
the classical stochastic results. One might therefore criticize this result on the
grounds that it is “not very quantum”. This is largely true, but the essential
achievement of Sect. 6.4 is to show that the decoherent histories approach
can be made to give the anticipated classical result. This was not true of the
earlier approaches reviewed in Sect. 6.3.

In Sect. 6.5, a detector model was introduced to give an alternative expres-
sion for the crossing time probability, for the purposes of comparison with the
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decoherent histories result. The detector model gave a better result, in that
it agreed and substantiated an earlier result of Allcock [2], which in turn is
closely related to the ideal distribution of Kijowski [45].

On comparison with the decoherent histories result, in Sect. 6.6, it was
easy to see that the environment in Sect. 6.4 produced far more decoherence
than is necessary to define the arrival time, and in that sense, that particular
environment is a very crude model for the measurement of time. The compar-
ison did, however, inspire the proposal of a third candidate expression from
which the arrival time probability could be calculated, namely (6.79), which is
based on continuous quantum measurement theory. This expression does not
seem to have been considered previously and will be explored in more detail
elsewhere.

One might be led from these results to a somewhat negative assessment
of the decoherent histories approach’s ability to provide the crossing time
probability. The somewhat crude nature of the results of Sect. 6.4, is however,
due to the choice of a rather indiscriminate system–environment coupling,
which effectively measures the entire trajectory. It seems likely that a much-
improved result could be obtained through choice of a more refined coupling
better suited to this particular problem.

Furthermore, there is another aspect to the decoherent histories approach
in this context, which has not yet been explored. Many approaches to the
arrival time problem are based on model measuring devices, i.e., physical
systems in which one of the dynamical variables is correlated with time in
some way. The detector model of Sect. 6.5 was of this type: one could think
of the two-state system as being some kind of clock or detector attached to
the particle, which switches on when the particle enters the region x < 0. By
physically measuring the two-state system at the end of the time interval [0, τ ]
of interest, one expects to be able to deduce that the particle was in x < 0,
or not, during the time interval. The outstanding question, however, is this:
How do we really know that the detector state is correlated with whether or
not the particle entered x < 0?

This is where the decoherent histories approach comes in. We consider a
system consisting of the particle and a detector (and possibly also an envi-
ronment, if necessary). We then look at histories in which both the final state
of the detector and the particle alternatives (whether or not it entered x < 0
during [0, τ ]) are specified. If these histories are decoherent, we then obtain a
joint probability distribution for the histories of the particle and the final state
of the detector, and we can ask to what degree these two things are correlated.
If they are perfectly correlated, then the detector probability is exactly the
same as the probability of the detector and the particle alternatives.

In brief, therefore, the decoherent histories approach will be a useful tool in
assessing the extent to which a proposed detector really does its job [37]. Many
model detectors are proposed essentially on the basis of classical arguments,
but the decoherent histories approach allows their effectiveness to be checked
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in a genuinely quantum way. This possibility does not appear to have been
explored in the context of arrival times, but will be considered elsewhere.

6.9 An Update for the Second Edition

Since the original publication of this volume, there have been a number of
developments of the ideas described in this chapter.

The first is an appreciate of the role of the Zeno effect in restricted propa-
gation problems such as the calculation of the decoherence functional, (6.50).
The main point is that summing over a set of paths remaining always in x > 0,
y > 0 in (6.50) is equivalent to inserting an excluding potential in the comple-
mentary region. As a consequence, all paths in x > 0, y > 0 never leave that
region and even if there is an environment present producing decoherence, the
probability of remaining in the region is always 1. This is clearly an unphysi-
cal answer and, furthermore, appears to be inconsistent with the semiclassical
result (6.57), where there is a non-zero probability of crossing the origin.

The key point here is that restricted propagation in x > 0 is equivalent
to hitting the state continuously in time with a projection operator θ(x̂). The
state then remains entirely in the region x > 0, which is essentially the Zeno
effect for continuous variables. Differently put, the dynamics is unitary in the
subspaces of state in x > 0, so no probability can be “lost” from this region
[66]. It was first noted by Hartle that coarse grainings of this type can be too
strong to give physically useful results [35], but this conclusion (now seen to
be correct) was somewhat uncertain in the light of an erroneous calculation
of the restricted propagator and as a result failed to be fully appreciated by
the authors [32], whose work is described in Sect. 6.4.2.

To get physically sensible results, it is necessary to “soften” the coarse
grainings used to describe the way in which paths remain in x > 0. One
simple way is to use projection operators θ(x̂) operating at a large but fi-
nite set of times t1, t2 · · · tn, with unitary evolution in between. It is clearly
the continuum limit that causes the state to remain entirely in x > 0 so
by keeping the time intervals (tk+1 − tk) non-zero the state has a chance to
“escape” between each projection. In retrospect this is essentially what was
calculated in [32] and in Sect. 6.4.2, which is why the correct semiclassical re-
sult (6.57) is obtained, although the use of semiclassical path integral methods
obscured the difference between projections at discrete times and the contin-
uum limit. Hence, despite the difficulties linked to the Zeno effect, the results
of these earlier works are correct in essence if the path integral constructions
are understood in terms of projectors operating at discrete set of moments of
time. It would, however, be of interest to carry out this calculation in more
detail.

One can of course imagine many different “softer” coarse grainings char-
acterizing the histories in the decoherent histories approach. Histories are
normally characterized by exact projection operators, but these are window
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functions of operators so have derivatives which discontinuous at some points
and it is this that can cause problems when they act continuously in time. It
is therefore natural to explore the use of POVMs instead of projectors, which
are generally smoother in their behaviour (although at the expense of losing
the exact exclusivity enjoyed by projection operators). This will be explored
in future publications, although it is worth noting that detector-inspired con-
structions such as (6.77) and (6.79) give some interesting hints as to how such
POVMs could be constructed.

The other area in which there has been significant activity concerns the ap-
plication of the decoherent histories approach to quantum cosmology. There,
the key question is, given that the system is in an eigenstate of the Hamilto-
nian (the Wheeler-DeWitt operator), what is the probability that the system
enters a region of configuration space at any stage in its entire history? (i.e.,
without regard to “time”, which does not exist in cosmological models). The
decoherent histories approach naturally adapts to this sort of question and
a number of papers have addressed these issues [33, 34]. These questions are
also affected by the Zeno effect difficulty described above which makes the
resolution of this issue particularly pressing.
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7.1 Introduction

To find out how much time a classical particle spends in a given region of space
one only has to use a stopwatch. The same question posed in the context of
quantum mechanics has caused controversy for several decades and remains
controversial to date. As early as in 1932, McColl [1] noted that tunnelling
must be characterised not only by the transmission rate but also by the speed
of transmission. The problem attracted renewed attention with the progress
in nano-technology [3, 4] and photonic tunnelling experiments [2]. It has been
hoped that a properly defined “traversal time” τ (i.e., the time a tunnelling
particle spends in the barrier) would, among other things, describe the re-
sponse of a tunnelling device to a time modulation of the barrier, provide an
insight into the nature of the image forces affecting the tunnelling rate and ex-
plain why a transmitted wave packet appears to arrive at a detector ahead of
the one that propagates freely. However, anyone interested in the subject soon
discovers that standard texts on quantum theory offer neither a clear defini-
tion nor a unique recipe for determining the duration τ . Numerous attempts
have been made to obtain a suitable quantum mechanical generalisation of
the classical traversal time (for reviews see [5]) with approaches ranging from
using specially designed “clocks” to invoking non-standard interpretations of
the quantum mechanics, such as that of Bohm [6].

The main difference between the traversal time and a conventional quantum
mechanical observable, such as coordinate or momentum, is that the former
refers to a duration, rather than to a single instant in time. We let a particle
travel for, say, 1 s and then ask how much of this 1 s it has spent in some
region Ω. For this reason, the traversal time problem is most conveniently
dealt with within the Feynman path integral formulation of quantum mechan-
ics [7]. This chapter is a review of the path integral approach developed in
[8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22]. It is not, however, our in-
tention to review all the work on the subject and a more comprehensive list of
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references can be found in [2, 3, 4, 5] and [14]. The paper is organised as follows:
in Sect. 7.2 we use the path integral to construct the traversal time amplitude
distribution and derive the clocked Schrödinger equation which governs its
evolution. Sections 7.3, 7.4 and 7.7 deal with various aspects of traversal time
measurements. In Sects. 7.5 and 7.6 we give detailed analysis of the tunnelling
time problem. Section 7.8 discusses the use of the traversal time in problems
involving a particle coupled to external degrees of freedom. In Sect. 7.9 we
analyse the phenomenon of “superluminal tunnelling” and in Sect. 7.10 we ex-
tend our analysis to relativistic theories. Section 7.12 contains our conclusions.

7.2 Path Decomposition. The Clocked Schrödinger
Equation. Coarse Graining

We start by defining the time τ a quantum particle spends in a chosen region
of space Ω. Conventionally, a measurement of a physical quantity F (e.g.,
coordinate or momentum) requires constructing a Hermitian operator F̂ and
expanding the particle’s wave function Ψ(x, t) it its eigenstates,

F̂ φi = Fiφi , (7.2.1)

Ψ(x, t) =
∑

i

ciφi(x) . (7.2.2)

The probability that F has a value Fi is then given by |ci|2. As shown by
von Neumann, the probability distribution |ci|2 can be measured, at least in
principle, by coupling the particle to an external degree of freedom [23].
A short consideration convinces us that there is no obvious operator to rep-
resent the traversal time τ . Indeed, τ represents the part of a certain time
interval, say 0 < t < T , which the particle has spent inside some region Ω.
In classical mechanics, evaluation of this quantity requires the knowledge of
the its trajectory x(t) between t = 0 and t = T . The corresponding classical
functional is

tclΩ[x(t)] =
∫ T

0

ΘΩ(x(t))dt , (7.2.3)

where ΘΩ(x) equals unity for x inside Ω and zero otherwise. It is readily seen
that tclΩ[x(t)] yields the time measured by a stopwatch which runs only when
the particle is inside Ω.
Quantum mechanics assigns probability amplitudes to physical events.
Accordingly, we should be looking for an amplitude (distribution) Φ(x, t|τ)
that a particle in x at t = T has spent in Ω a duration τ . This is most easily
done with the help of Feynman path integral. The solution of the Schrödinger
equation

i�
∂Ψ(x, t)

∂t
= − �

2

2m
∂2Ψ(x, t)

∂x2
+ V (x)Ψ(x, t) , (7.2.4)

for a particle in a potential V (x) can be written in the path integral form [7]
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Ψ(x, T ) =
∫

dx′
∫

x′(0);x(T )

Dx(t) exp{iS[x(t)]/�}Ψ(x′, 0) , (7.2.5)

where

S[x(t)] =
∫ T

0

[mẋ2/2 − V (x)]dt , (7.2.6)

is the classical action. In (7.2.5) Dx(t) denotes a sum over paths starting in x′

at t = 0 and ending in x at t = T (Fig. 7.1). Most of Feynman paths are contin-
uous but highly irregular [7]. They form a complete set of possible histories for
a spinless point particle whose final and initial positions are x and x′, respec-
tively. Each path contributes exp{iS[x(t)]/�} to the Schrödinger wave func-
tion Ψ(x, t) which is found by summing over all initial positions. Now we can
identify Φ(x, t|τ) with the contribution from the subset of paths which spend
in Ω precisely duration τ . Thus, Φ(x, t|τ) is given by a restricted path integral

Φ(x, T |τ) =
∫

dx′
∫

x′(0);x(T )

Dx(t)δ(tclΩ [x(t)] − τ) exp{iS[x(t)]/�}Ψ(x′, 0) ,

(7.2.7)
where δ(x) is the Dirac delta function. Equation (7.2.7) can be cast in a more
convenient form by writing δ(tclΩ [x(t)] − τ)) as a Fourier integral,

δ(z) =
1

2π�

∫
dW exp{−iWz/�} , (7.2.8)

and noting that adding the term −iWtclΩ[x(t)] to the action S[x(t)] is equiv-
alent to adding a rectangular potential WΘΩ(x) to V (x). This gives

t
X′,T

XΩ

Fig. 7.1. Feynman path connecting (x, 0) with (x′, T ) spend different durations
in Ω
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Φ(x, T |τ) =
1

2π�

∫
dW exp{iWτ/�}Ψ(x, T |W ) , (7.2.9)

where Ψ(x, T |W ) denotes the result of evolving the initial state Ψ(x, 0) in a
composite potential V (x)+WΘΩ(x). It is easy to show that the traversal time
distribution Φ(x, T |τ) satisfies the “clocked” Schrödinger equation [16, 17, 18]

i�
∂Φ(x, t|τ)

∂t
= − �

2

2m
∂2Φ(x, t|τ)

∂x2
+ V (x)Ψ(x, t) − i�ΘΩ(x)

∂Φ(x, t|τ)
∂τ

,

(7.2.10)
with the initial condition

Φ(x, 0|τ) = Ψ(x, 0)δ(τ) . (7.2.11)

Generalisation of (7.2.7)–(7.2.10) to three dimensions is straightforward. So
far, we have sorted Feynman paths according to the duration τ each path
spends in Ω and decomposed (unfolded) the Schrödinger amplitude Ψ(x, T )
into subamplitudes Φ(x, T |τ) so that Ψ(x, T ) can be seen as a result of inter-
ference between different particle’s histories,

Ψ(x, T ) =
∫ T

0

Φ(x, T |τ)dτ . (7.2.12)

In fact, our analysis is similar to that of a two-slit diffraction experiment
[7], except that we have an infinite number of slits continually labelled by the
value of τ . This analogy suggests that the Schrödinger wave function Ψ(x, T )
“knows” nothing about the value of the traversal time, as this information
is lost through interference. We may also predict that a measurement of τ
would destroy the value of Ψ(x, T ) just as an attempt to establish which of
the two holes has been chosen by a particle destroys the interference pattern
on the screen. Finally, we expect that a measured value of τ will occur with a
probability ≈ |Φ(x, T |τ)|2. The last statement requires further attention. As
τ is a continuous variable, we expect that a measurement of a finite accuracy
would allow interference between certain values of τ . We therefore define the
coarse grained amplitude Ψ(x, t|τ),

Ψ(x, T |τ) =
∫ ∞

−∞
G(τ − τ ′)Φ(x, T |τ ′)dτ ′ , (7.2.13)

where G(τ) is sharply peaked around τ = 0 with a width Δτ so that the (un-
normalised) probability ρ(x, T |τ) for a particle found in x at t = T to have τ
in the range [τ −Δτ/2, τ + Δτ/2] is

ρ(x, T |τ) = |Ψ(x, T |τ)|2 . (7.2.14)

Equations (7.2.10)–(7.2.14) are the basis of our analysis.
As a first example consider a particle trapped in the ground state φ0(x)
of a potential box (V = 0 for −L < x < L and 0 otherwise) [18]. The
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last term in (7.2.10) tends to propagate the part of the distribution con-
tained in Ω forward in τ , while the kinetic energy is responsible for diffusive
spreading in the x variable. The latter effect has a characteristic time scale of
T0 = 2mL2/�, essentially the inverse of the particle’s uncertainty in the ki-
netic energy. Contour plots of the probability density ρ(x, T |τ) = |Ψ(x, T |τ)|2
calculated numerically with a Gaussian coarse graining function

G(τ) = Δτ/π1/2 exp[−τ2/Δτ2] , (7.2.15)

Fig. 7.2. Traversal time distributions for a particle in the ground state φ0(x) of a
potential box coarse grained with Δτ/T = 0.2 in the short (a), medium (b) and
long (c) time limits. The region Ω is chosen so that

∫
Ω
|φ0(x)|2dx = 0.5. The plot

in the inset is the same as in (c) but for Δτ/T = 0.02
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are shown in Fig. 7.2 for Δτ/T = 0.2, T/T0 = 0.05(a), 0.5(b) and 5.0(c).
In the short time limit (a), the diffusive term can be neglected and we find
the particle close to its original position. For T/T0 = 0.5 there is already
a considerable mixing between Ω and the rest of the well, with still a ten-
dency for larger τ ’s inside Ω. In the long term (Fig. 7.2c), the particle forgets
its initial position and the distribution is centred around τ̄ =

∫
Ω
|φ0(x)|2dx.

Overall, Fig. 7.2 suggests the existence of a “microscopic motion” responsible
for the exchange of particles between Ω and the rest of the well, similar to
the Brownian motion which carries a particle around a volume even though
overall concentration remains unchanged [16]. However, contrary to the clas-
sical analogy, this exchange is hampered and a Zeno-type paradox arises if
one reduces the amount of coarse graining, Δτ → 0 as shown in the inset in
Fig. 7.2c. In the next section we will relate this behaviour to the influence of
the clock required to measure τ .

We conclude with few general remarks. The Schrödinger wave function
Ψ(x, t) describes a quantum particle in terms of its position at a given time.
This description can be extended, e.g., by adding an extra variable τ related
to how the particle arrived in x, i.e., to the particle’s past. The status of
τ is different from that of x. Integrating Φ(x, t|τ) over τ restores the wave
function Ψ(x, t) whereas

∫
Φ(x, t|τ)dx yields no meaningful amplitude. In our

approach, different traversal times may either interfere or be exclusive alter-
natives, depending on whether we attempt to measure τ or not. On the other
hand, at any given time, the positions of different particles are always exclu-
sive. The same analysis can be applied to other classical functionals, notably
to the mean value of a dynamical variable [19, 20, 22] (p is the momentum)
F (p, x), 〈F 〉 ≡ T−1

∫ T
0

F (p, x)dt. The von Neumann limit in (7.2.1) can then
be obtained by letting T → 0 [23].

Finally, we may construct conditional amplitude distributions for several
functionals, Φ(x, t|y1, y2, ..., yn) which satisfy Schrödinger-like equations in
variables x, y1, y2, ..., yn and reduce to the Schrödinger wave function upon
summation over y1, y2, ..., yn,

∫
Φ(x, t|y1, y2, ..., yn)dy1, dy2, ..., dyn = Ψ(x, t).

7.3 Meters and Measurements. Uncertainty Relation

To measure the traversal time we need to devise a meter which would destroy
interference between certain classes of Feynman paths. More precisely, we
expect a meter of accuracy Δτ whose reading is τ0 to include contributions
from those paths with τ0 −Δτ/2 ≤ τ ≤ τ0 + Δτ/2 and discard the rest. The
recipe for constructing such meter is contained in the definition of the classical
quantity to be measured or, more precisely, in the equation of motion (7.2.10)
obeyed by Φ(x, t|τ). First we note that the coarse grained amplitude Ψ(x, t|τ)
also satisfies (7.2.10) (we write Ĥ(p, x) for the particle’s Hamiltonian)



7 Quantum Traversal Time 201

i�
∂Ψ(x, t|τ)

∂t
= [Ĥ(p, x) − i�ΘΩ(x)

∂

∂τ
]Ψ(x, t|τ) , (7.3.1)

with the initial condition

Ψ(x, 0|τ) = Ψ(x, 0)G(τ) . (7.3.2)

This can be verified directly by substituting (7.2.13) into (7.2.10) and inte-
grating by parts. Equation (7.2.10) describes a particle in terms of its position
and the time spent in Ω. Alternatively, we may interpret it as a two-particle
Schrödinger equation describing a particle coupled to a meter (pointer) which
correlates its position τ with the value of the classical functional in (7.2.3). At
t = 0 the meter is prepared in the state G(τ), and then runs until t = T . At
t = T the meter is read, i.e., its position is accurately determined. The (un-
normalised) joint probability for finding the particle in x and a meter reading
τ is given by |Ψ(x, T |τ)|2 in accordance with (7.2.14). Thus, the classification
of Feynman paths based on the value of τ uniquely determines interaction
with the meter required to destroy interference between the classes.

Now we may take a closer look at how a meter perturbs the particle’s
motion. The accuracy of a measurement (the amount of coarse graining in
(7.2.13)) is determined by the initial state of the meter G(τ). The meter is
inaccurate because we have no precise knowledge of its initial position. To
improve the accuracy we may wish to choose G(τ) more narrowly peaked
around τ = 0. However, a decrease in the peaks width Δτ increases the
spread of the meter’s momenta. We note further that a meter prepared with
initial momentum W , Ψ(x, 0|τ) = Ψ(x, 0) exp(iWτ/�) retains it throughout
interaction and adds WΘΩ(x) to the potential V (x). Therefore, a meter acts
back on the particle by changing the potential in which it moves in such a
way that a better accuracy leads to more perturbation. (This problem does
not occur in classical mechanics where a pointer can have zero momentum as
well as a well-defined initial position.) This can be summed up in the form of
an uncertainty relation

ΔτΔW ≥ � , (7.3.3)

which states that in order to measure the traversal time to accuracy Δτ one
must create an uncertainty ΔW in the potential in the region of interest. In
other words, W plays the role of the variable conjugate to τ .

The fact that destruction of coherence between Feynman paths is synony-
mous with the dynamical interaction between the particle and a meter can be
demonstrated in a more direct manner. Choosing G(τ) = G0(ατ) and scaling
τ → ατ in (7.2.10) yields

i�
∂Ψ(x, t|τ)

∂t
= [Ĥ(p, x) − iα�ΘΩ(x)

∂

∂τ
]Ψ(x, t|τ) , (7.3.4)

with Ψ(x, 0|τ) = Ψ(x, 0)G0(τ). Equation (7.3.4) shows that an increase in α
and therefore in the meter’s resolution can equally be described by an increase
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in the magnitude of the particle–meter coupling while the meter’s initial state
remains unchanged.

Finally, we relate our approach to the von Neumann projection postulate
mentioned at the beginning of Sect. 7.2. For this purpose, it is convenient to
consider the fractional traversal time

ξ = T−1

∫ T

0

ΘΩ(x(t))dt .

Dimensionless ξ gives the fraction of the total time T spent inside Ω and
Ψ(x, 0|ξ) satisfies (7.3.4) with α = T−1. In the limit T → 0 in (7.3.1) H(p, x)
can be neglected compared to −iα�ΘΩ(x)∂Ψ(x, t|τ)/∂τ and (7.2.10) reduces
to that of von Neumann [23]. The fractional traversal time is seen to be rep-
resented by the projection operator ΘΩ(x). This operator has eigenvalues of
1 and 0 for the functions whose support lies inside and outside Ω and 0,
respectively. Thus as T → 0 the particle retains its position and a measure-
ment of the fractional traversal time simply establishes whether the particle
is inside Ω.

7.4 Averages. Complex Times. Weak Measurements

Probability distribution (7.2.14) can be used to construct various averages.
For example, we may select the final position of a particle i.e., assume that
the meter is read only if the particle is registered in x at t = T . This would
require a large number of trials but can, in principle, be done. The expectation
value in this case is

〈τ(x)〉 =
∫ ∞

−∞
τ |Ψ(x, T |τ)|2dτ/

∫ ∞

−∞
|Ψ(x, T |τ)|2dτ . (7.4.1)

Alternatively, we may decide to read the meter regardless of where the particle
arrives in the end. The expectation value becomes

〈τ〉 =
∫ ∞

−∞
τ |Ψ(x, T |τ)|2dτdx/

∫ ∞

−∞
|Ψ(x, T |τ)|2dτdx . (7.4.2)

Note that the accuracy of the meter Δτ enters (7.4.1)–(7.4.2) through the
coarse grained Ψ(x, T |τ). Equation (7.4.2) can be rewritten in a more appealing
form if we use (7.2.10) to evaluate the time derivative of

∫
τ |Ψ(x, T |τ)|2dτdx.

Integrating over time we have (we assume
∫
τ |G(τ)|2dτ = 0)

〈τ〉 =
∫ T

0

dt

∫ ∞

−∞
dxΘΩ(x)

∫ ∞

−∞
dτ |Ψ(x, t|τ)|2/

∫ ∞

−∞
|Ψ(x, T |τ)|2dτdx .

(7.4.3)
Equation (7.4.3) is similar to the classical expression for the traversal time
(7.2.3). The value of ΘΩ(x(t)) on the particle’s trajectory is, however, replaced
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by the conventional expectation value of the operator ΘΩ(x(t)) evaluated with
the particle–meter wave function Ψ(x, T |τ).

Next we ask whether it is possible to minimise the perturbation induced
by a meter and still learn something about the quantum traversal time. This
has been the approach of many early papers on the subject [5, 30, 31, 32].
Our two-slit analogy suggests that we are, in effect, trying to determine which
hole was used by an electron without destroying the interference pattern on
the screen and this cannot be done in a satisfactory manner [7]. It is, however,
instructive to see how this approach fails. Consider G(τ) so broad that the
meter all but decouples from the particle (cf. (7.3.4)). If so, expanding G in
(7.2.12) to linear terms around τ ′ = 0 yields

Ψ(x, t|τ) ≈ Ψ(x, t)[G(τ) −G′(τ)τ̄ (x)] , (7.4.4)

where “the complex time” τ̄(x) is the complex-valued first moment of the fine
grained amplitude Φ(x, T |τ),

τ̄ (x) =
∫ T

0

τΦ(x, T |τ)dτ/Ψ(x, t) , (7.4.5)

and we have used the folding property (7.2.12). The spread of the meter
readings is extremely wide but we can still collect enough statistics to evaluate
the expectation value. Selecting only particles in x and inserting (7.4.4) into
(7.4.1) yields (again,

∫
τ |G(τ)|2dτ = 0)

〈τ(x)〉 ≈ Reτ̄(x) . (7.4.6)

It is at this point that we experience a difficulty. The average τ̄(x) is com-
puted with a complex valued and, which is more important, oscillatory distri-
bution Φ(x, T |τ). The properties of such averages are very different from those
obtained with non-negative probability distributions. For example, if a non-
negative ρ(x) ≥ 0 is contained within [0, T ], then x̄ ≡

∫ T
0 xρ(x)dx/

∫ T
0 ρ(x)dx

is guaranteed to lie between 0 and T . If, however, we allow ρ(x) to take neg-
ative values, x̄ may take any real value (e.g.,

∫ T
0

ρ(x)dx → ±∞ will send x̄
to ±∞). As a result, x̄ no longer represents the region which contains the
support of ρ(x). For this reason, although Φ(x, T |τ) is contained inside [0, T ]
(no Feynman path can spend in Ω duration which exceed T or is negative)
Reτ̄(x) may lie outside [0, T ]. The ill-posed question provokes an unsatisfac-
tory answer: on average, a particle appears to spend in Ω 10 s (or, possibly, 10
s) between t = 0 and t =1 s. Clearly, this does not suggest that in quantum
mechanics 1 s can be stretched into 10 s. Rather our approach fails, as we
expected, to resolve the two-slit paradox. The situation just described corre-
sponds to a weak measurement of the traversal time. The concept of a weak
measurement was introduced by Aharonov et al. [24] and extended to the
traversal time measurements in [26] and [27].
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The just described problem with weak values seems to disappear if we
choose not to control the final position of the particle. Replacing in (7.4.3)
Ψ(x, t|τ) by Ψ(x, t)G(τ) gives (we assume

∫
|Ψ(x, t)|2dx = 1)

〈τ〉 ≈
∫ T

0

dt

∫

Ω

dx|Ψ(x, t)|2 . (7.4.7)

The “dwell time” [5] in (7.4.7) certainly has a value between 0 and T and
looks like the classical expression (7.2.3) with ΘΩ(x(t)) replaced by its ex-
pectation value with the unperturbed Schrödinger wave function Ψ(x, t). A
similar expression can be obtained in the Bohmian quantum mechanics [6].
There have been attempts to use (7.4.7) to define the quantum traversal time.
However, as we have seen, traversal times with similar properties cannot be
obtained if the averaging is done over subsets of the coordinate space, e.g.,
for the transmission channel in one-dimensional tunnelling [5, 32, 33, 35]. It
should, therefore, be remembered that in the conventional quantum mechan-
ics the mean traversal time is defined by (7.4.2) rather than by (7.4.7). The
fact that 〈τ〉 in (7.4.7) is real and positive can be attributed to a sum rule
satisfied by τ̄(x) which, in turn, is related to conservation of particles [8].

7.5 Examples: Free motion and Tunnelling

Duration of tunnelling has been of the most interest and next we will obtain
the traversal time distribution Φ(x, t|τ) for a particle with energy E tunnelling
through a rectangular barrier (Ω ≡ [a, b])

V (x) = V Θab(x) . (7.5.1)

At t = 0 the particle is described by a broad wave packet ≈ exp(ikx), E =
�

2k2/2m to the left of the barrier. After tunnelling, at t → ∞, the transmitted
particle’s state is essentially

Ψ(x, t) = T (k, V ) exp(ikx− iEt/�) , (7.5.2)

where T (k, V ) is the transmission amplitude. We recall from (7.2.9) that in or-
der to construct Φ(x, t|τ) we must consider transmission across all rectangular
potentials [V + W ]Θab(x)] (barriers if W > −V or wells if W < −V ),

Φ(x, t|τ) = exp(ikx− iEt/�)
1

2π�

∫
dW exp{iWτ/�}T (k, V + W )

≡ exp(ikx− iEt/�)ηV (k, τ) , (7.5.3)

the problem reduces to evaluating the Fourier transform η(k, τ) ofT (k, V +W ).
For free motion, V ≡ 0,
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η0(k, τ) =
1

2π�

∫
dW exp{iWτ/�}T (k,W ) , (7.5.4)

where the transmission amplitude T (k,W ) is given by

T (k,W ) =
−4iβz exp(−iβ)

(z − iβ)2 exp(z) − (z + iβ)2 exp(−z)
, (7.5.5)

β ≡ k(b− a) ,

z ≡ [2m(W − E)]1/2(b− a)/� .

The contour of integration in (7.5.4) can be closed in either upper (for τ > 0)
or lower (for τ < 0) half-planes. The transmission amplitude T (k,W ) has no
poles below the real W -axis and η0(k, τ) vanishes, as it should, for negative
traversal times. Above the real W -axis, T (k,W ) has an infinite number of
poles {Wn, n = 1, 2, 3...} whose locations are shown in Fig. 7.3. Summing the
poles contribution, we obtain a series representation for η0(k, τ), τ > 0.

η0(k, τ) =
∞∑

n=1

(−1)n−1an exp(iWnτ/�) . (7.5.6)

It can be demonstrated [14] that for large n, an → const and Wn →
−(n − 1)2 × const. An interesting property of the series, whose fractal-like
behaviour was studied by Berry and Goldberg [28], is that it is oscillatory
so that Φ(x, t|τ) must be interpreted as a distribution. Indeed, the r.h.s. of
(7.5.6) contains arbitrary high frequencies and does not converge to a smooth

n = 6

n = 5

n = 4

n = 3

n = 2

n = 1

lm
 z

/π

6

4

2

0
0 1 2

Re z

Fig. 7.3. Trajectories of the poles of the transmission amplitude T (k,W ) in the
complex plane of z ≡ [2m(W − E)]1/2(b − a)/� as β ≡ k(b − a) increases from 0
to ∞ (dashed). Also shown by solid lines are the same trajectories for the double
barrier structure discussed in Sect. 7.7
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function of τ . The sum over poles does, however, converge after coarse graining
with a suitably smooth G(τ).

More precisely, if the width of G is Δ, the number of terms required to
converge the sum for the coarse grained Ψ(x, t|τ) is ≈ Δ−1/2. Physically, this
means that improving the accuracy of the measurement we will pick more
and more terms in (7.5.6) and find more fine structure in the distribution of
traversal times. The Gaussian coarse grained amplitude Φ0(x, t|τ) is shown in
Fig. 7.4 for different values of β.

This remark equally applies to the case of tunnelling. The amplitude dis-
tribution ΦV (x, t|τ) for a rectangular barrier of height V differs from the that
for a free particle only by the factor exp(−iV τ/�),

ΦV (x, t|τ) = exp(−iV τ/�) exp(ikx− iEt/�)η0(k, τ) . (7.5.7)

This is because Φ0(x, t|τ) contains contributions only from those paths which
spend τ inside [a, b] (cf. (7.2.7)) and for any such path an additional
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τ 0
 η

0 
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) 

Fig. 7.4. Real (solid) and imaginary (dashed) parts of the free particle traversal
time distribution after Gaussian coarse graining with Δτ/τ0 = 0.015 for different
values of β ≡ k(b− a). In the semiclassical limit (c), note the stationary region near
the classical value τ0 = m(b− a)/�k
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rectangular potential of height V modifies the Feynman amplitude exp(iS/�)
by exp(−iV τ/�).

Even though |Φ(x, t|τ)|2 cannot be evaluated for any given τ we can esti-
mate the probability P (Υ, Υ + dΥ ) to find the readings of an infinitely accu-
rate meter within the interval [Υ, Υ + dΥ ]. It can be demonstrated [14] that
a high-resolution (ideal) measurement is distributed exponentially (the limits
have to be taken in the given order)

P (Υ, Υ + dΥ ) ≡ limdΥ→0limΔ→0

∫ Υ+dΥ

Υ

|ΨV (x, t|τ)|2dτ/
∫ ∞

0

|ΨV (x, t|τ)|2dτ

= 4τ−1
0 exp(−4Υ/τ0)dΥ , (7.5.8)

where

τ0 ≡ m(b− a)/�k , (7.5.9)

is the time it takes a classical free particle with energy E to cross [a, b].
Notably, the result (7.5.8) does not depend on V and equally applies to both
tunnelling and free motion. This is not surprising, since in the high-accuracy
limit the original potential is overwhelmed by interaction with the clock (cf.
(7.3.3)) and no longer matters.

7.6 Semiclassical Limit. How Long Does it Take
for a Particle to Tunnel?

Quantally, the traversal time is a distributed quantity. A unique time is ob-
tained in the classical limit when the size of the region b − a exceeds the de
Broglie wavelength of the particle

β ≡ k(b− a) � 1 . (7.6.1)

To see how this happens, we write T (k,W ) in (7.5.5) as a geometric progression

T (k,W ) =
∞∑

n=0

Tn(k,W ) , (7.6.2)

Tn(k,W ) ≡ −4izβ
(z − iβ)2

(z + iβ)2n

(z − iβ)2n
exp[−(2n + 1)z − iβ/�] . (7.6.3)

In (7.6.2) the n-th term corresponds to a particle bouncing (2n + 1) times
between the discontinuities of the potential at x = a and x = b [29] and
for free motion we only need T0(k,W ). Inserting T0(k,W ) into (7.5.4) and
applying the stationary phase method, we find the phase of the integrand
stationary at W (τ) defined by the classical relation
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m(b− a)/{2m[E −W (τ)]}1/2 = τ . (7.6.4)

This means that the main contribution to (7.5.4) comes from a potential W
such that it takes a classical trajectory exactly the time τ to cross [a, b]. For
η0(k, τ) we find

η0(k, τ) = − 4τ0
(τ + τ0)2

[
βτ0
2πτ

]1/2
exp

[
i
β(τ − τ0)2

2ττ0
− i

π

4

]
. (7.6.5)

For large β the exponential in (7.6.5) oscillates very rapidly outside a narrow
vicinity δτ ≈ β1/2τ0 of the classical value τ0 in (7.5). A coarse grained am-
plitude ΨV (x, t|τ) in (7.2.13) with Δτ � δτ has the largest value when the
maximum of G coincides with τ0 and is cancelled elsewhere by the oscillations
of Φ0(x, t|τ). As a result, the meter always finds the classical value and we
conclude that a classical particle spends in [a, b] duration τ0.

The additional factor exp(−iV τ/�) which appears in the tunnelling time
distribution (7.5.7) shifts the critical point of η0(k, τ). In the case of semiclas-
sical tunnelling, V � E, ηV (k, τ) = exp(−iV τ/�)η0(k, τ) has two complex
saddles

τV = ±i(b− a)m/[2m(V − E)]1/2 , (7.6.6)

and rapidly oscillates everywhere on the real τ -axis. There is, therefore, no
unique real time associated with tunnelling. Rather, Feynman paths with all
possible traversal times interfere destructively to produce exponentially small
transmission amplitude [13]. The contour of integration in (7.2.12) can be
deformed to run up the negatively imaginary τ -axis so that the lower saddle
−i|τV | contributes to the transmitted part of the wave function. In this sense,
the tunnelling particle “spends in the barrier imaginary time”. (Note that the
complex time of Sect. 7.3 is in this case purely imaginary, τ̄ (x) = −i|τV |.) All
this does not however mean that semiclassical tunnelling takes approximately
|τV | seconds. We may try to measure the tunnelling time in an experiment
which for a free particle produces the result τ0. Since τ0 is real, it is possible
that we measure either Reτ0 or |τ0|. In the tunnelling regime, however, the
experiment of the first type would give us 0 and the experiment of the second
type |τV |. (For example, in Sect. 7.7 we will show that a Larmor clock can,
in principle, determine |τV | while in Sect. 7.9 we will demonstrate that the
complex saddle is responsible for what seems like infinitely fast transfer of a
tunnelling wave packet across the barrier region.) Thus, the assumption that
tunnelling has a well-defined duration similar to that of classical propagation
would lead to a contradiction.

7.7 Larmor Clock as a Realistic Meter

Now we turn to the practical realisation of the traversal time meter described
in Sect. 7.2. We recall that a clock would need to distinguish between Feyn-
man paths with different values of τ , select those paths for which τ lies close
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to the measured value and discard the rest. Next we will show that such meter
is, in fact, the Larmor clock often discussed in connection with the tunnelling
time problem [5, 30, 31, 32, 33, 34, 35, 36, 37] and Chap. 8. The Larmor
clock consist of a magnetic moment μ (proportional to the particle’s spin or
angular momentum) which travels with the particle and a constant magnetic
field H created in the region of interest Ω. Inside the region the spin precesses
around the direction of the filed with a constant angular velocity ωL. Classi-
cally, the angle by which the spin rotates between, say, t = 0 and t = T is
proportional to the net duration the particle spends in Ω, Δφ = ωLt

cl
Ω[x(t)].

Quantally, this systems coarse grains the unfolded amplitude Φ(x, t|τ) intro-
duced in Sect. 2 [12, 14]. To demonstrate this, we note that the coupling
between a spin an a magnetic field directed along the z-axis is given by

Vint = ωLĵzΘΩ(x) , (7.7.1)

where ĵz is the z-component of the spin. The wave function of the system
|Υ 〉 is a 2j + 1-component spinor, and the amplitude to find the particle in
x and simultaneously observe the clock in |γk〉 at time t (we assume that
|γk〉, k = 0, 1, ..2j form a complete orthogonal set) is Ak(x, t)〈γk|Υ 〉. If the
magnetic field is switched on at t = 0 when the the particle state is Ψ(x, 0)
and the clock is prepared in |γ0〉, i.e.,

A(x, 0) = 〈γk|α〉Ψ(x, 0) , (7.7.2)

for t > 0 we find [12]

A(x, t) =
∫ ∞

0

dτF (γk|γ0, j, ωL, τ)Φ(x, t|τ) , (7.7.3)

where
F (γk|γ0, j, ω, τ) ≡ 〈γk| exp(−iωLĵzτ/�)|γ0〉 . (7.7.4)

Equation (7.7.3) looks similar to (7.2.12) and we only need to choose the
states |γk〉, k = 0, 1, ..2j, the size of the spin j and the Larmor frequency ωL
to give the coarse graining function F (γk|γ0, j, ωL, τ) a desired shape. It is
convenient to choose |γk〉, k = 0, 1, ..2j as follows [36, 37]. For |γ0〉 we write
(|γk〉 =

∑j
−j γ

k
n|n〉, ĵz|n〉 = n|n〉).

γ0
n = (2j + 1)−1/2 , (7.7.5)

and the remaining states are obtained by rotating |γ0〉 by an angle
φk ≡ 2πk/(2j + 1) around the direction of the field,

γkn = (2j + 1)−1/2 exp(−inφk), k > 0 . (7.7.6)

(Note here the analogy with a stopwatch where the measured time is pro-
portional to the angular displacement of the hand, Fig. 7.5.) With this choice
we have
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Fig. 7.5. The choice of the states |γk〉 for the Larmor clock

G(τk−τ) ≡ F (γk|γ0, j, ωL, τ) = (2j+1)−1 sin[(j + 1/2)ωL(τk − τ)]
sin[ω(τk − τ)/2]

, (7.7.7)

τk ≡ φk/ωL, k = 0, 1, ...2j .

As shown in Fig. 7.6, for large j and finite ω, the coarse graining function
G(τk − τ) is peaked around τk with the base width of Δτ ≈ 4π/[ωL(2j +
1)]. The Larmor clock is, therefore, similar to the meter of Sect. 7.2 except
that its readings, τk like those of a digital watch [37], are discrete. It also
provides a good illustration for the uncertainty principle (7.3.3) discussed in
Sect. 7.2. Indeed, the potential energy (7.7.1) is such that if the projection of
the spin on H is n, the particle experiences inside Ω an additional constant
potential �nωLΘΩ(x). The clock’s initial state |γ0〉 in (7.7.5) contains, with
equal amplitudes, all 2j + 1 values of n. The uncertainty in the potential is,
therefore, ΔW = 2�jωL and the product of the two uncertainties, ΔWΔτ , is
as it should, of the order of �, ΔWΔτ ≈ 4π�.

Next we show in Figs. 7.7–7.10 the readings the clock would produce when
applied to a free particle, transmission across a rectangular barrier and res-
onance tunnelling through a double barrier potential. In all cases (except

0

τ / T
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 5 |γ
 0 

, 1
0,

 2
π/

T
, τ

)

0

1

1

Fig. 7.6. Coarse graining function of a Larmor clock for j = 10, k = 5, ωL = 2π/T



7 Quantum Traversal Time 211

in Fig. 7.10 where a better resolution is needed) we choose j = 20. We
then plot the probability Pk to find the value τk for different values of the
parameter β ≡ (2mE)1/2(b − a), Ω ≡ [a, b], essentially the ratio between
the size of region and the de Broglie wavelength of the particle. For a free
particle, in the classical limit β � 1 the clock measures the classical value
τ0 = (b− a)m1/2/(2E)1/2. As the de Broglie wavelength becomes comparable
to b − a, β ≈ 1 the peak at τ0 breaks into smaller multiple peaks and the
readings spread. In the ultraquantum case β � 1, the readings are dis-
tributed exponentially around the origin. A similar plot for a rectangular
barrier V Θa,b(x), (2mV )1/2(b − a)/� = 150 is shown in Fig. 7.7. For β � 1,
we again find a single peak at the classical value on the trajectory passing
above the barrier top. Near the barrier top, E ≈ V, β ≈ 150 the peak is
almost destroyed as the transmission becomes dominated by the barrier top
resonances [14]. Finally, in the tunnelling regime, E � V, β ≤ 150 the clock
measures a zero duration. We shall return to this result in the next section
where we discuss the “superluminal” tunnelling.

Next we consider resonance tunnelling through a simple double barrier
structure consisting of two δ-potentials,

V (x) = �
2χ/m[δ(x− a) + δ(x− b)] . (7.7.8)

For large value of χ the barriers are almost impenetrable and the potential
(7.7.8) supports quasistationary states Ei − iΓi which may trap the incident
particle. The effect leads to a complete transparency of the structure when
the particle’s energy E ≈ Ei. The resonance tunnelling is often described
as accompanied by a long time delay as the particle bounces between the
walls of the potential well. Both can be observed with the help of a Larmor
clock. Figure 7.9 shows the readings of the clock with Δτ = 5τ0 for E close
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Fig. 7.7. Free particle traversal time distribution measured by a Larmor clock with
accuracy Δτ/τ0 = 0.1
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Fig. 7.8. Same as Fig. 7.7 except for a rectangular barrier such that β < 150
corresponds to tunnelling. In the tunnelling regime, the peak at τk=0 is reduced by
a factor of 10 to allow for better viewing

to the 32nd quasiationary level, β = 32π whose position is indicated by a
black triangle. One notices the long tails associated with resonance tunnelling
(actually, the resonance tail is split into two tails on both sides of β = 32π).
Further away from the resonance there are large peaks at τ ≈ 0, corresponding
to “fast” off-resonance tunnelling. Improving resolution of the clock allows us
to observe the multiple bounces mentioned above. In Fig. 7.9 a clock with
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Fig. 7.9. Traversal time distribution for resonance tunnelling measured by a Larmor
clock with accuracy Δτ/τ0 = 5. Approximate position of the resonance is indicated
by a black triangle
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the resolution Δτ = 0.4τ0 finds peaks near τ = τ0; 3τ0; 5τ0, ... corresponding
to the particle crossing [a, b] once, three times after two reflections, five times
after four reflections, etc. Note that there is little change in the plot on passing
through resonances. Thus the long tails at E ≈ Ei and the multiple bounces
cannot be observed simultaneously – they require different resolutions.
Baz’ was the first to propose the Larmor clock in order to measure the collision
time [30, 31]. His approach, however, differed from the one just described and
we conclude this section with its brief analysis. Baz’ required the magnetic
field to be small, ωL → 0 so as not to perturb the particle. Initially, the spin
is polarised along the x-axis. For a small field, precession of the spin in the
xy-plane is defined as φ⊥ = 〈ĵy〉/�j + O(ω2

L) and the traversal time is found
as the ratio between φ and ωL. As we have seen in Sect. 7.4 an attempt to
minimise the effect of the meter results, in general, to a weak measurement.
Thus we expect the Baz’ clock to measure, in one way or another, the complex
time τ̄ given by (7.4.5). To demonstrate this, we note first that if initially the
spin is in the state |α〉 polarised along the x-axis,

αn = [(2j)!/22j(j + n)!(j − n)!]1/2 , (7.7.9)

the final amplitude An to find the clock in the state |n〉 is given by (7.7.4)
with

FBaz(n|α, j, ωL, τ) = αn[1 − inωLτ + O(ω2
L)] . (7.7.10)

Using An to evaluate the mean value of ĵy at some location x yields

〈ĵy〉/�j = ωLReτ̄(x) + O(ω2
L) . (7.7.11)

What is more, the spin also acquires a non-zero component along the z-axis
[8], proportional to τ̄(x) (Fig. 7.11)
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Fig. 7.10. Same as Fig. 7.9 except for Δτ/τ0 = 0.4
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Fig. 7.11. After interacting with a weak magnetic field the spin, initially polarised
along the x-axis appears to be rotated both in the xy- and xz-planes. The total
rotation angle is proportional to the modulus of the complex traversal time τ̄

〈ĵz〉/�j = ωLImτ̄(x) + O(ω2
L) . (7.7.12)

Therefore, the Baz’ clock operates in the weak measurement regime and al-
lows one to determine Reτ̄(x), Imτ̄ (x) or, if the total angle of rotation is
considered, |τ̄(x)|.

7.8 Traversal Time Analysis

In classical mechanics, the amount of time a particle spends in the interaction
region can be used to predict how the interaction affects its motion. Next, we
ask whether the quantum traversal time, which is a distributed quantity, can
be used in a similar way, e.g., to analyse tunnelling across time-dependent
barriers or the effect of surface plasmons responsible for the image forces. The
short answer to this question is no. The usefulness of the quantum traversal
time is determined by its construction. To obtain the free particle fine grained
amplitude Φ0(x, t|τ) we have sorted all Feynman paths according to the value
of τ and evaluated the restricted path integral for each τ . Now, if an interaction
adds to the free particle action S0[x(t)] a term which can be expressed via
τclΩ [x(t)], i.e., (F (z) is an arbitrary function)

S0[x(t)] → S0[x(t)] + F (τclΩ [x(t)]) , (7.8.1)

we may write the Schrödinger wave function Ψ(x, t) as a simple quadrature

Ψ(x, t) =
∫

exp[iF (τ)/�]Φ0(x, t|τ)dτ . (7.8.2)

(We have already used the property (7.8.2) (with F (τclΩ [x(t)]) = τclΩ [x(t)] in
(7.5.7) while discussing tunnelling across a rectangular barrier.) Unfortunately,
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neither interaction with a time-dependent barrier nor with the plasmons is of
the required type and in each case a similar analysis would require a functional
other than τclΩ [x(t)].

We find the usefulness of the quantum traversal time greatly reduced. The
fact that the integrand of (7.2.12) is oscillatory deserves further consideration.
As an example, consider a particle with energy E which tunnels across a
rectangular barrier V Θab(x) and is coupled, while in the barrier, to a single
harmonic oscillator with mass M , angular frequency ω and coordinate q [13,
14]. If the interaction has the form λΘab(x)q, one finds the amplitude for a
transition leaving the oscillator in its original ground state given by a path
integral with the effective action [7]

S[x(t)] = S0[x(t)] − V τclΩ [x(t)]

+2iα2

∫ t

0

dt′
∫ t

0

dt′′Θab(x(t′))Θab(x(t′′)) exp[−iω(t′ − t′′)] ,

(7.8.3)

where α ≡ λ(4Mω)−1/2. If the oscillator is very slow, ω → 0, the last term in
(7.8.3) becomes α2τclΩ [x(t)]2 and we can write the transmission amplitude as

T (k, V, α) =
∫ ∞

0

exp[−α2τ2/� ,−iV τ/�]η0(k, τ)dτ (7.8.4)

where η0(k, τ) is given by (7.5.4). Consider now how a slow oscillator affects
the transmission probability P (k, V, α) ≡ |T (k, V, α)|2. One might think that
adding yet more interaction to a rectangular barrier would reduce already
small tunnelling probability further. This is, however, not the case. The ratio
P (k, V, α)/P (k, V, 0) plotted in Fig. 7.12 as a function of the coupling strength
α shows initial rapid rise and then a more gradual decrease.

To understand this behaviour, we recall that for α = 0 the tunnelling
probability in (7.8.4) is exponentially small due to the cancellation between
the negative and positive oscillations of the integrand, which itself is not small.
Adding exp[−α2τ2] to the integrand at first destroys the cancellation and
boosts transmission. A stronger coupling, however, restricts the integration
range and, eventually, quenches tunnelling.

To conclude, we consider the time(s) associated with the transition in the
semiclassical limit � → 0. These are given by the saddle points of the integrand
in (7.8.4). With the help of (7.8.3) and (7.8.4) we find the saddles determined
by a cubic equation

iα̃τ3 − τ2 − |τV |2 = 0 , (7.8.5)

where α̃ = 2α2/(V − E)1/2 and τV is the complex tunnelling time defined in
(7.6.6). Without coupling, α = 0, we have the two imaginary saddles ±i|τV |
discussed in Sect. 7.5. As the coupling increases, the upper saddle τ (1) moves
towards the origin. The lower saddle τ (2) moves down the negative imaginary
τ -axis until at some α = αcrit it meets with the third root of (7.8.5), τ (3) rising
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Fig. 7.12. The ratio of the transmission probabilities for a an opaque rectangular
with and without coupling to a slow oscillatory mode as a function of the coupling
strength α (solid). The dashed line is the saddle point result. An arrow indicates the
value of α where two complex saddles coalesce

up the same axis from −∞. After this, the two saddles leave the imaginary
axis and describe loops in the third and the fourth quadrants of the complex
τ -plane as shown in Fig. 7.13.

As α → ∞ all three saddles meet at the origin. A detailed analysis shows
that for α ≥ αcrit the positive real axis in (7.8.4) can be deformed into a
steepest descent contour involving only τ (3) in the fourth quadrant. Thus
we conclude that a tunnelling particle coupled to a low-frequency oscillator
“spends in the barrier a complex duration Reτ (3)+iImτ (3)” in the same sense
that without coupling “tunnelling takes an imaginary time −|τV |”. The same
analysis shows that for α ≤ αcrit both τ (2) and τ (3) contribute to the integral.
The case α ≈ αcrit requires a uniform semiclassical treatment which we will
not discuss here. The steepest descent approximation to T (k, V, α) is shown
in Fig. 7.12 by a dashed line.

7.9 Traversal Time and the “Superluminal” Tunnelling

Can the traversal time be used, as is often suggested, to understand the speed
at which a wave packet propagates across a classically forbidden region and,
in particular, the phenomenon of “superluminal tunnelling”? The latter can
be described as follows. Suppose we send a wave packet across a potential
barrier of height V and width d. If the mean energy of the wave packet E0 lies
well above the barrier, the particle behaves classically. Therefore, the higher
the barrier, the longer it takes the particle to cross it and, eventually, to arrive
at a given location on the other side. Equivalently, a snapshot at a given time
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Fig. 7.13. Trajectories of the semiclassical complex times for an opaque rectangular
barrier and a slow oscillatory mode as the coupling strength α increases from 0 to
∞. τV is the imaginary time for tunnelling across the barrier only

will always find the delayed particle behind the one that propagates freely
(Fig. 7.14). If V is increased until V > E, a classical particle will bounce off
the face of the barrier and reverse its motion. Quantally, a small part of the
wave packet tunnels and a snapshot in Fig. 7.14 will find it approximately
a distance d ahead of the free particle suggesting that a tunnelling particle
spends almost no time in the barrier. It is tempting then to conclude that its
velocity exceeds in the barrier the speed of light, hence the appearance of the
term “superluminal” in the heading of this section.

All this is easily illustrated in the semiclassical limit, � → 0. Let the initial
wave packet have a mean momentum p0

Ψ(x, 0) = exp(ip0x/�)G(x) =
∫ ∞

−∞
A(p− p0) exp(ipx/�) dp , (7.9.1)

where G(x) is a suitable, e.g., Gaussian,

G([x + a]/Δx) = exp[−(x + a)2/Δx2], a < 0 , (7.9.2)

envelope, independent of �. After scattering, its transmitted part becomes

Ψ(x, t|V ) =
∫ ∞

−∞
A(p− p0)T (p, V ) exp[i(px− Et)/�]dp , (7.9.3)

where E(p) = p2/2m and T (p, V ) is the transmission amplitude. Well above,
E � V , and well below the barrier, E � V , we can replace T (p, V ) by the
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Fig. 7.14. Snapshot of a Gaussian wave packet with the mean momentum p0,
p0d/� = 90.25 taken for t/τ0 = 5.5. The wave packet passing over the barrier (b)
is delayed relative to the free one (a). The tunnelling wave packet (c) is very small
(note the large factor of Z = exp[2(2mV −p0)
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The dashed line is the semiclassical result. Other parameters are: x0 ≡ (�b/p0)
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first term in the multiple reflection expansion (7.6.2)

T (p, V ) ≈ T0(p, V ) . (7.9.4)

As � → 0, the width of the momentum distribution A(p − p0) decreases as
�
−1 and we expand the last two exponents in (7.9.3) around p0 to first order

in p− p0 which yields

Ψ(x, t|V ) = exp[i(p0x− E(p0)t)/�]T0(p0, V )G(x − δx) , (7.9.5)

where
δx(V ) ≡ v0t− d[1 − p0/(p2

0 − 2mV )1/2] . (7.9.6)

By the time t a free wave packet travels the distance v0t. A wave packet
passing above the barrier, p2

0 − 2mV ≥ 0 is delayed and lies a distance d[1 −



7 Quantum Traversal Time 219

p0/(p2
0 − 2mV )1/2] behind. In the tunnelling regime, p2

0 − 2mV � 0, the last
term in (7.9.6) is imaginary, and the maximum of |G(x − δx)|2 in (7.9.5) lies
a distance d ahead of the freely propagating peak and the particle reaches
a detector approximately d/v0 earlier then a free one. Further discussion of
superluminality can be found in [38].

We, however, are interested in the relation between the distribution of the
times spent in the barrier and the final position (and shape) of the transmitted
wave packet. In the classical limit there is a simple relation between τ and the
distance travelled by the particle, δx

δx ≡ v0(t− τ) + d , (7.9.7)

so that finding the particle in x we also know the value of τ . A similar classical
relation exists between τ and the angle by which a spin rotates in the magnetic
field. By analogy, we may expect that quantally the amplitude to find the
particle in x can be obtained by coarse graining the traversal time distribution.
This turns out to be the case, but only in the semiclassical limit.

The transmitted wave packet can be constructed by summing the traversal
time distribution over all τ . For a rectangular barrier, we have the identity

Ψ(x, t|V ) = (2π�)−1

∫ ∞

0

dτ exp(−iV τ/�)
∫ ∞

−∞
dW exp(iWτ/�)Ψ(x, t|W ) .

(7.9.8)
where Ψ(x, t|W ) is the transmitted wave packet for the potential WΘ−d/2,d/2(x)
as given by (7.9.6). Again, for T (p,W ) it is convenient to use the multiple
reflection expansion retaining only the first term. We then use (7.9.5) and
evaluate the second integral in (7.9.8) by the stationary phase method. The
stationary phase condition reads

md/(p2
0 − 2mW (τ))1/2 = τ , (7.9.9)

and the result is

Ψ(x, t|V ) =
∫ ∞

0

G(−[τ̄ (x) − τ ]/Δτ ])ΦV (x, t, p0|τ)dτ , (7.9.10)

where
τ̄ (x) ≡ t− (δx− d)/v0 , (7.9.11)

Δτ ≡ Δx/v0 , (7.9.12)

and
ΦV (x, t, p0|τ) = exp(−iV τ/�)Φ0(x, t, p0|τ) , (7.9.13)

is the traversal time distribution for a particle with energy E(p0) in a potential
V Θ−d/2,d/2(x) defined earlier in (7.5.3) and (7.6.5). We note again that for any
value of τ , 0 ≤ τ ≤ ∞ (7.9.9) finds a rectangular potential ∞ ≤ W (τ) ≤ E (a
barrier or a well) such that a classical trajectory with the initial momentum
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p0 spends inside [−d/2, d/2] exactly τ . (No contradiction with the uncertainty
principle of Sect. 7.3 as we consider � → 0.) Along this trajectory, the envelope
G is translated as a whole and we obtain (7.9.10). The right-hand side of
(7.9.10) has the form of a coarse grained amplitude (7.2.13) with the coarse
graining function G determined by the envelope of the initial wave packet.
Thus, constructing a broad initial wave packet and then finding a particle
at a location x we perform a traversal time measurement on a particle with
the energy E(p0). Note that in this case the system “measures itself” as we
require no external degree of freedom to represent a meter.

Next, to find the position x̄ of the peak of the transmitted probability
Ψ(x, t|V ) we first look the most probable value of the traversal time measured
with the coarse graining function G([τ̄ (x)− τ ]/Δτ ]) τ̄ and then obtain x̄ from
the classical relation (7.9.7). For a free particle, Φ0(x, t, p0|τ) has a stationary
region near τ0 = d/v0. As discussed at the end of Sect. 7.6, the integral
(7.9.10) peaks when G is centred at τ0 and the peak of the wave packet is at
x̄ = a + v0t (Fig. 7.14). For a finite barrier E � V , the stationary region of
ΦV (x, t, p0|τ) shifts to larger τ and the wave packet is delayed. For tunnelling,
V > E, ΦV (x, t, p0|τ) has no real stationary point, but (7.9.10) still applies
and the integral (7.9.10) can be evaluated by the steepest descent method
which yields the result (7.9.6) (Fig. 7.15).

The envelope G is evaluated at the complex saddle (7.6.6), −idm/(2mV −
p2
0)

1/2 and the right-hand side of (7.9.10) takes the largest value when G
is positioned closest to the saddle, i.e., at τ̄ = 0 (Fig. 7.14). Since G([τ̄ (x) −
τ ]/Δτ ]) restricts integration in (7.9.10) to small τ ’s, we may conclude that the
trajectories which most contribute to the tunnelling experience in the barrier
region a very deep potential well. As a result, the transmission is very fast,
but since the paths interfere destructively, the transmitted pulse is typically
exponentially small. We stress again that this analysis is valid only in the
semiclassical limit � → 0 and, in general, the relation between the traversal
time distribution and the shape of the Schrödinger wave function is limited
to (7.2.12). One drawback of our approach is that it seems to rely on the
classical trajectories which cross Ω faster than light. Such trajectories are
forbidden by special relativity and appear only because we have employed
the non-relativistic Schrödinger equation. The latter is sufficient to describe
the propagation of a wave packet at the low energies we consider. Yet in
the traversal time analysis we probe regimes which should be described by a
relativistic wave equation. This will be done in the next section.

7.10 Relativistic Traversal Time

An obvious way to deal with the superluminal velocities we have encoun-
tered in the previous section is to replace in our analysis the Schrödinger
equation by one of the relativistic wave equations [39]. Since we are only
interested in the mechanism of tunnelling, we may choose the simplest one
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for the spinless particles, i.e., the Klein–Gordon equation [39, 40, 41]. In the
relativistic notations the Klein–Gordon equation for a particle of mass m
and charge e interacting with an electromagnetic field A ≡ (A0,A) reads
(� = 1, c = 1)

(i∂/∂xμ − eAμ)2Ψ = m2Ψ . (7.10.1)

The propagator G(x, x′) of (7.10.1) can be written in the path integral form
by considering xμ(u) as function of the “fifth parameter” u [40, 41],

G(x, x′) =
∫ ∞

0

du exp(−im2u/2)
∫

Dx exp[−i

∫ u

0

L(x(u′))du′] , (7.10.2)

with the Lagrangian

L(x) ≡ (dxμ/du)2/2 + eAμdx
μ/du . (7.10.3)

With the help of an arbitrary field Bμ(x) we may now construct a (scalar)
functional
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Also shown is the Gaussian coarse grained function (dashed) determined by the wave
packet’s envelope and centred so as to maximise the integral (7.9.10). All parameters
are as in Fig. 7.14
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F [x(u)] =
∫

duBμ(x)dxμ/du , (7.10.4)

which, for a particular choice

B0 = θΩ(x), B1 = B2 = B3 = 0 , (7.10.5)

coincides with the traversal time
∫
θΩ(x(t))dt. Next we use the delta function

δ(F [x(u)] − τ) to restrict integration in (7.10.2) only to those paths in (t,x )
which spend in Ω a duration τ . Proceeding exactly as in Sect. 7.2, we arrive
at the “clocked” Klein–Gordon equation obtained from (7.10.1) by replacing
∂/∂t → ∂/∂t + θΩ(x)∂/∂τ . In particular, for a one-dimensional particle in a
potential V (x) we have
{
c−2

[
i�

∂

∂t
+ i�θΩ(x)

∂

∂τ
− V (x)

]2

+ �
2 ∂2

∂x2

}
Φ0(x, t|τ) = m2c4Φ0(x, t|τ) .

(7.10.6)
We recall here that the paths in (7.10.2) are no longer required to proceed
forward in time and may reverse themselves [40, 41]. The points at which these
reversals occur are associated with the creation and annihilation of virtual
particle–antiparticle pairs. Accordingly, we can no longer expect Φ0(x, t|τ) to
vanish for τ < 0 where it may describe antiparticles propagating back in time.

To find the traversal time distribution for a free wave packet we choose the
initial condition (7.9.1). To exclude antiparticles we must require, in addition,
that each plane wave component in (7.9.1) propagates with a positive energy
(c is the speed of light)

ε(p) = c(p2 + m2c2)1/2 . (7.10.7)

We then continue as in previous section. The problem reduces to evaluation
of the Fourier transform of the transmission coefficient T0(p, z) (7.6.2) with z
given by the relativistic relation

z = [(ε− V )2 −m2c4]1/2d/� . (7.10.8)

In the limit � → 0, we obtain the analogue of (7.9.10)

Ψ(x, t|V ) =
∫ ∞

−∞
dτG(−[τ̄ (x) − τ ]/Δτ ])ΦrelV (x, t, p0|τ) , (7.10.9)

with
τ̄ (x) ≡ t− (δx− d)/v0, v0 = dε(p0)/dp . (7.10.10)

For a particle with initial momentum p0 relativistic traversal time distribution
is given by

ΦrelV (x, t, p0|τ) = exp[−iε(p0)t/� + ip0x/� − ip0b/�]

× (2π�)−1/2 4p0dε
3/2
0 τ3

c

(τ − τc)1/4[p0d(τ2 − τ2
c )1/2 + ε0τ2

c ]2

× exp{ i

�
[ε(p0)τ − V τ − ε0(τ2 − τ2

c )1/2] − iπ/4} , (7.10.11)
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where
τc ≡ d/c, ε0 ≡ mc2 . (7.10.12)

The contour of integration in (7.10.11) is shown in the inset in Fig. 7.16,
where the branch of the square root is chosen so that on the lower side of the
right-hand cut (τ2 − τ2

c )1/2 is real and positive.
A free particle distribution, ηrel0 (p0, τ) ≡ exp{ i

�
[ε(p0)t − p0(x − b)]}

×(Φrel0 (x, t, p0|τ) is shown in Fig. 7.16a. For τ � τc Φrel0 (x, t, p0|τ) coincides
with the non-relativistic distribution Φ0(x, t, p0|τ) of the previous Section. No
relativistic particle can traverse a distance d in less than d/c. Accordingly, for
−τc ≤ τ ≤ τc Φrel0 (x, t, p0|τ) is exponentially small. For τ < τc, Φrel0 (x, t, p0|τ)
contains an antiparticle branch associated with paths which cross Ω with time
direction reversed. For the free motion, this branch is highly oscillatory and
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does not contribute to propagation which is dominated by τ ’s in the stationary
region near the classical value

τ0 = d/v0 .

We are interested in the tunnelling regime (ε(p0)−V )2 < ε20 when ΦrelV (x, t, p0|τ)
has a complex saddle at

τV = −i
d(V − ε(p0))

c[ε20 − (ε(p0) − V )2]1/2
.

For a non-relativistic particle p2
0/2m � ε0, V − p2

0/2m � ε0, τV reduces to
≈ −imd/[2m(V − E(p0)]1/2 and ΦrelV (x, t, p0|τ) is oscillatory both for τ > τc
and τ < τc. However, the antiparticle branch oscillates much more rapidly and,
as expected, the time-reversed paths do not contribute to tunnelling. We note
next that the analysis of the previous section applies even in the absence of
the superluminal classical velocities. Indeed, as before, the integral in (7.9.10)
has maximum value when the Gaussian G is placed opposite the complex
saddle τV , i.e., for τ̄ (x) = 0 (Fig. 7.16). The fact that |Ψ(x, t|V )|2 has the
largest value when the maximum of the coarse graining function coincides with
the minimum of the traversal time distribution may at first seem surprising.
We note, however, that Ψ(x, t|V ), which itself is exponentially small, builds
from many oscillations of the integrand in (7.10.9) across the whole range of
(positive) τ ’s.

It is interesting to see what happens when the barrier height becomes ex-
tremely large. The transmission amplitude (either full T (p, V )) or T0(p, V )
depends on the potential only through (ε − V )2. This means, in particular,
that T (p, V ) for V = 2ε is the same as for a free particle with energy ε, i.e.,
that a very high barrier is transparent. The τ -distribution for this case is
shown in Fig. 7.16. Its particle branch is highly oscillatory and transmission
is dominated by the vicinity of the stationary point at −τ0. Accordingly, the
transmitted wave packet appears to spend in the barrier a negative amount
of time and in the snapshot in Fig. 7.14 would be placed ahead of the tun-
nelled pulse. It is clear that the trajectory which contributes to transmission
must experience in the barrier a time reversal (see inset in Fig. 7.16c). This
effect is consistent with the following mechanism: as the particle approaches
the barrier a particle–antiparticle pair is created at its right-hand side. The
particle continues in the forward direction while the antiparticle, for which the
potential energy has the opposite sign, travels to the left face of the barrier
where it annihilates the incoming particle. The newly created particle has,
therefore, a 2d/v0 head start on the original one. Note that no superluminal
velocities are required to achieve this speedup. Unfortunately, this effect is an
artefact of our one particle model and is unlikely to be observed. The reason
for this is that the required barrier potential is strong enough to create real
particle–antiparticle pairs. The antiparticles trapped in the inverted barrier
potential will reduce its magnitude just is pair creation screens a large charge
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[42]. In practice, it is impossible therefore to create a rectangular potential
with a magnitude exceeding 2mc2. Together with the uncertainty principle
(7.3.3), this suggests a limit of �/mc2 on the accuracy with which the quan-
tum traversal time can be measured in a relativistic theory.

7.11 “Superluminal” Paradox and the Speed
of Information Transfer

Next we follow [43] in order to further develop some of the conclusions of
Sects. 7.9 and 7.10. Using a somewhat different definition of the time delay
experienced by a particle in the scatterer and the analogy with Aharonov’s
weak measurements, we will demonstrate that “superluminality” occurs when
the value of the duration spent in the barrier is uncertain, whereas when
it is known accurately, no “superluminal” behaviour is observed. Using the
same analogy, we will also show that the information encoded in non-analytic
features (e.g., cut-offs) of an electromagnetic pulse cannot be transferred faster
than light even across a fast light medium, where the group velocity of the
pulse exceeds c.
As a prerequisite, we require a brief recourse to the Aharonov’s weak mea-
surements, already mentioned is Sect. 7.4 and fully described by the authors
in Chap. 13 of this book. Consider a quantum system prepared at t = 0 in
an initial state |I > and then post-selected (observed) at t = T in some final
state |F >,

|I >=
∑

ν

aν |ν > |F >=
∑

ν

bν |ν >, Â|ν >= Aν |ν > . (7.11.13)

If at some t, 0 < t < T, the system is subjected to a von Neumann-type
measurement [23] of an operator Â, the state of the pointer with position τ
after post-selection is given by [24, 25]

< τ |M >=
∑

ν

G(τ −Aν)ην ην ≡ b∗νaν (7.11.14)

where G(τ) is the initial, say, Gaussian state of the meter, whose width Δτ
determines the accuracy of the measurement. The outcome of the measure-
ment depends on the initial uncertainty in the pointer position, Δτ . For Δτ
sufficiently small

Δτ << Aν+1 −Aν ,

the possible readings coincide with the eigenvalues of Â, which we will assume
to be all non-negative and equally spaced, Aν ≥ 0, For Δτ > Aν+1 −Aν , the
situation is different. If ην were all positive, like the classical probabilities,
< τ |M > would occupy the region τ ≥ 0 and rapidly decrease for τ < 0.
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However, ην are probability amplitudes, rather than probabilities, and may
alternate. A careful choice of ην (i.e., of |I > and |F >) can, therefore, produce
a < τ |M > which would peak at some negative “anomalous” value τ0 < 0,
while for τ > 0 the pointer wave function will vanish due [24, 25] to the de-
structive interference between the Gaussians. Aharonov and co-workers have
assesed that such anomalous outcome is possible although unlikely.

Consider next a one-dimensional wave packet with a central momentum k0,
transmitted across a scatterer (e.g., potential barrier, undersized waveguide,
a slab of fast light material) whose width is b. For some large t = T the
transmitted pulse has the form

ΨF (x) ≡< x|F >=
∫ ∞

−∞
T (k)C(k − k0)exp[ikx− iE(k)T]dk, (7.11.15)

where T (k) is the transmission amplitude. Using the convolution property of
the Fourier integral, (7.11.15) may be rewritted as

< x|F >=
∫

ΨT(x − x′)ξ(x′)dx′ (7.11.16)

where
ΨT(x) =

∫ ∞

−∞
C(k − k0)exp[ikx− iE(k)T]dk, (7.11.17)

is the pulse obtained from the initial state under the free evolution, and

ξ(x) ≡ (2π)−1

∫
T (k) exp[ikx]dk. (7.11.18)

The transmitted pulse is now given by a weighted sum of the shapes ΨT(x−x′)
delayed, if x′ < 0, or advanced if x′ > 0, relative to the free propagation.
Closing in (7.11.18), the contour of integration into the upper half-plane shows
that

ξ(x) ≡ 0 for x > 0 (7.11.19)

provided T (k) does not have poles with positive imaginary parts. Such poles
may be located only on the positive imaginary axis [42], where they correspond
to bound states of the particle or field and without them the transmitted
pulse builds up only from ΨT’s delayed relative to the free pulse. This is
not suprising, as in classical mechanics a particle only accelerates if passing
over a potential well, which, in the quantum case, is the source of bound
states.

The argument is readily rephrased in terms of scattering times by identi-
fying

τ(x′) ≡ −x′/v0 (7.11.20)

with the time delay experienced by the particle in the scatterer. Replacing x′

with τ yields
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ΨF = exp[ik0x− iE(k0)T ]
∫

G(τ(x) − τ)η(τ)dτ (7.11.21)

where G is the envelope of ΨT ,

G(τ) ≡ exp[iE(k0)T + ik0v0τ ]ΨT (−v0τ) (7.11.22)

and
η(τ) ≡ −v0 exp[ik0v0τ ]ξ(−v0τ). (7.11.23)

Comparing (7.11.21) with (7.11.14) shows that the relation between the time
delay τ and the particle’s position x is that between a measured quantity,
whose amplitude distribution is η(τ) and the position of the pointer, whose
initial state is determined by the envelope of the initial pulse Δτ . This is not
entirely unexpected, since we use the particle’s position just like a pointer,
by reading which we hope to gain information about the time delay τ . For a
classical free particle, we recover the one-to-one correspondence betwen x′ and
τ by choosing a narrow initial wave packet, thus making the “measurement”
more accurate, or “strong”. Importantly, this cannot be done in the case of
tunnelling. Indeed, making the initial pulse narrow in the position space will
broaden its momentum distribution and eventually cause some momenta pass
over the barrier rather than tunnel, thereby destroying the “superluminal”
effect. For this reason, our “measurement” of the time delay of a tunnelling
particle is inevitably “weak” and its uncertainty is inevitably large. Thus,
the emergence of an apparently “superluminal” pulse in Fig. 7.14 with an
estimated time delay of −b/v0 when

η(τ) ≡ 0 τ < 0 (7.11.24)

is completely analogous to obtaining an anomalous negative reading in an
Aharonov’s measurement of a variable with only non-negative eigenvalues,
briefly discussed above. It is this large uncertainty in the value of the time
delay which allows the negative result −b/v0 to co-exist with the causality
implied by (7.11.24), e.g., in the case of tunnelling across a potential barrier.

In Sect. 7.10 we have already demonstrated that the “superluminal” tun-
nelling does not contradict special relativity. Next, we will show that even un-
der apparently “superluminal” conditions the information, encoded in a non-
analytic feature, such as a sharp cut-off, of the initial pulse cannot travel with
a velocity greater than c. Photonic wave packets, which do not spread in vac-
uum, are better suited for the purpose of information transfer and henceforth
we will consider the optical propagation. The proof of the above statement is
straightforward: as long as the transmission amplitude across the sample of,
say, fast light material has no poles in the upper half of the complex k-plane,
the most advanced term in (7.11.16) would be the one propagating freely with
the vacuum light velocity c. This means that any feature in the envelope of
the initial pulse may only advance at most by the distance cT, so that the
information, encoded in such feature, may not travel with the speed greater
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then c. To achive a truly superluminal information transfer one would need a
(one dimensional) material which supports both the scattering and the bound
states of the photon, and would, therefore, speed the photon up in the same
way a potential well accelerates an electron. We are not aware of the existence
of such materials. Earlier, Aharonov and co-workers [25] have shown the weak
measurements to be unsuitable for faster-than-light information transfer, and
we have just extended their result to the case of “superluminal” propagation.

All the above can be illustrated with the help of a simple set-up exhibiting
all the main features of apparently “superluminal” transmission. Consider the
propagation of an electromagnetic pulse across two narrow semitransparent
mirrors modelled by two δ-function of magnitude Ω located at x = 0 and
x = b, respectively. The transmission amplitude can then be written as

T (k) =
∞∑

m=0

T (m)(k) ≡ (1 + R(k))
∞∑

m=0

R(k)2m exp(2imkb) (7.11.25)

where
R(k) = −iΩ/(2k + iΩ) (7.11.26)

is the reflection amplitude for a single δ-function placed at the origin x = 0. If
the mirrors are opaque (Ωb >> 1), the amplitude distribution η(τ) is sharply
peaked at τm = 2mb/c (Fig. 7.17a) and the incident pulse is split into a
number of discrete path modes corresponding to 2m, m = 0, 1, 2... additional
reflections experienced by the ray between x = 0 and x = b [44] so that we deal
with a discrete spectrum of non-negative delays, τm = 2mb/c (cf. (7.11.14)),

ΨF (x) ≈
∑

m

G(τ(x) − τm)T (n)(k0). (7.11.27)

For a broad initial Gaussian pulse,

G(x) = exp(−x2/Δx2), Δx > b,

Fig. 7.17b shows that the terms in (7.11.27)), each delayed by τm > 0 con-
spire to produce an advanced transmitted peak corresponding to a negative
time delay of ≈ −b/c. It is easy to see that choosing a narrow Gaussian pulse
destroys tunnelling and with it the apparent “superluminality”. The double
barrier structure supports equally spaced resonances at k = kj ≡ πj/b, be-
tween which the transmission amplitude is very small. For an incident pulse
to tunnel, it must fit between two neighbouring resonances and its momentum
spread Δk must not exceed π/b. Thus, if the “superluminal” behaviour is ob-
served, the time delay is known with uncertainty of about Δτ ≈ 1/cΔk ≈ b/c,
which is just the “weakness” condition for the Aharonov’s pointer, discussed
in the first paragraph. And just as a “strong” von Neumann measurement
reveals the spectrum of the variable Â, a narrow initial pulse is split into com-
ponents exhibiting the positive time delays τm, m = 0, 1, 2... contained in the
amplitude distribution η(τ), as shown in Fig. 7.17e. Suppose now that we have
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Fig. 7.17. (a) Discrete non-negative time delays τm ≥ 0 for two opaque mirrors.
(b) Broad Gaussians representing ΨT, all delayed compared to the free pulse, intefere
to produce a pulse advanced by b/c. (c) If the front part of initial pulse is removed,
the field vanishes beyond the causal boundary xB corresponding to τ (x) = 0. (d) If
the rear part of the pulse is removed, the field beyound xB is identical to the uncut
field, and contains no information as to whether the initial signal was cut or not.
(e) A narrow initial pulse destroys “superluminality” and reveals the non-negative
delays τm contributing to the transition

a detector which clicks when reached by a sharp front of the signal. With this
in mind, we may cut the initial Gaussian pulse in two, discard the front half
and send it through the mirrors, hoping that the front would emerge, like the
peak of the full Gaussian, ahead of its freely propagating counterpart. Equa-
tion (7.11.27) and Fig. 7.17c show, however, that the field would always vanish
beyond the causal boundary xB = cT+a, where a denotes the initial position
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of the cut. Alternatively, we may remove the rear part of the initial pulse and
ask whether using a “fast light” medium would allow us to distinguish be-
tween the cut and uncut pulses sooner, than we could in vacuum. Again, the
answer is no, since for x > xB the transmitted field builds up from the front
tails of ΨT’s, which are the same for the cut and uncut Gaussians (Fig. 7.17d),
so that the observer has to await the arrival of the information-carrying part
of the signal, travelling at the speed of light. The experiment similar to one
just described was actually made by Stenner and co-workers [44], who used
potassium vapour, rather then mirrors, to achieve apparently “superluminal”
propagation. They concluded that the information detection time for pulses
propagating through the fast light medium is somewhat longer than that in
vacuum, even though the group velocity in the medium is in the highly su-
perluminal regime. Figure 1a of [44] is similar to Fig. 7.17d and the above
analysis provides a simple explanation for their result.

In summary, we note that the contradiction between the impossibility of
faster-than-light travel and observing an apparently “superluminal” transmit-
ted pulse is resolved in a typically quantum mechanical fashion: when “super-
luminality” is present, one does not know the delay, and cannot claim that
the duration spent in the scatterer is shorter than b/c. Conversely, when the
delay is known, no “superluminal” transmission is observed.

7.12 Concluding Remarks

We had a twin task of defining the quantum traversal time and analysing its
possible use for such applications as nanotechnology and wave packet propa-
gation. The first part turns out to be the most interesting. The traversal time
τ can be defined by equating it with the duration a Feynman path spends
in the region of interest Ω. Since there are many paths leading to the same
final particle’s position, τ is a distributed quantity and the Schrödinger wave
function Ψ(x, t) is a sum of subamplitudes Φ(x, t|τ) corresponding to all dif-
ferent durations. Conceptually, the situation is not much different from the
two-slit diffraction experiment. (Feynman once wrote [45]: “any other situa-
tion in quantum mechanics, it turns, out can be explained by saying, ‘You
remember the case of the experiment with two holes? It’s the same thing’ ”.)
However, since τ is a continuous variable, to construct observable probabili-
ties one requires a coarse grained amplitude Ψ(x, t|τ) which allows for certain
amount of interference between different classes of paths and can be used to
construct measurable probabilities. These simple assumptions determine all
properties of τ including a recipe for its measurement and the Heisenberg-like
uncertainty relation (7.16). Mapping the equation of motion for Φ(x, t|τ) onto
a particle–meter Schrödinger equation determines the dynamical interaction
required to destroy the coherence between different durations. The meter turns
out to be just the Larmor clock consisting of a spin in a constant magnetic
field HΘΩ(x). The amount of coarse graining (and, therefore, the accuracy of
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the measurement) is related to the initial uncertainty of the meter’s position
and we obtain a finite time generalisation of the von Neumann measurement,
which depending on the accuracy, can be either weak or strong. It is worth
noting that such a measurement does not rely on expanding the Schrödinger
state in eigenfunctions of any “traversal time operator”. A similar scheme can,
in principle, be applied in a relativistic quantum theory.

The second part of our conclusions is more negative. The quantum traver-
sal time turns out to be a much less useful quantity than its classical coun-
terpart. In particular for tunnelling we fail to provide a single timescale to
be compared with the period with which the barrier goes up and down or
with the frequency of surface plasmons. This leaves out most realistic in-
teractions and limits us to a few cases where, as in scattering off rectangular
potentials, the interaction can be expressed in terms of the classical functional
(7.2.3). But even then we only succeed in replacing the sum over paths by a
one-dimensional oscillatory integral which is difficult to evaluate beyond the
semiclassical limit � → 0. For a classically allowed transition, a semiclassical
analysis recoveres the unique classical duration, but for a classically forbid-
den transition, e.g., tunnelling, it finds complex saddle(s) of Φ(x, t|τ) which
cannot be identified as real duration(s).

In the end, “the actual time it takes to tunnel” is found to be as elusive
as “the slit through which an electron actually went” and the tunnelling time
problem remains a subject for someone more interested in the subtleties of
the quantum measurement theory than in the practicalities of nanostructure
engineering. Yet far from remaining a mathematical abstraction, the measure-
ment theory is instrumental in explaining and classifying experiments related
to to the tunnelling times in one way or another. The long-standing paradox
of apparent “superluminality” can be resolved by analysing a particular type
of interference, first associated with highly inaccurate von Neumann measure-
ments. Such an analysis reveals the limits on the speed of information transfer
in experiments on “superluminal” propagation, and once again demonstrates
that it is impossible to describe quantum tunnelling by a single, albeit aver-
aged, time parameter.
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Time is to clock as mind is to brain. The clock or watch somehow contains the time.
And yet time refuses to be bottled up like a genie stuffed in a lamp. Whether it
flows as sand or turns on wheels within wheels, time escapes irretrievably, while we
watch. Even when the bulbs of the hourglass shatter, when darkness withholds the
shadow from the sundial, when the mainspring winds down so far that the clock
hands hold still as death, time itself keeps on. The most we can hope a watch to do
is mark that progress. And since time sets its own tempo, like a heartbeat or an ebb
tide, timepieces don’t really keep time. They just keep up with it, if they are able.

Dava Sobel [1]

8.1 Introduction

In the formal development of quantum mechanics any observable is math-
ematically represented by an operator acting in an appropriate functional
space. In this spirit the position, momentum, energy, and other quantities are
associated with operators from which predictions can be made following the
rules of the theory. In certain cases, for instance the decay of a metastable
state, for which it is natural to ask about its lifetime, the question that we ask
has as an answer a quantity with units of time. In this way, a time variable
is observed and measured and, therefore, we should construct an operator to
which the answer experimentally observed can be attributed. That is to say,
we are required to produce some time operator within the context of the the-
ory. As has been repeatedly emphasized elsewhere in this volume, there have
been many attempts to build such an operator [2], despite an early theoretical
objection by Pauli [3]. One of the difficulties lies on the fact that the Hamil-
tonian operator plays a dual role in the theory: on the one hand it represents
the energy of the system and, on the other hand, it is the generator of the time
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development for wave functions [4]. A more operational approach consists in
constructing some physical system from which we can extract some timescale
associated with a physical process.

Another aspect to consider is that the times we measure are uncertain and
prone to error, as any kind of measurement is. Within quantum theory, there
are two questions that we must pose concerning this point. In the first place,
we should enquire whether there exists some intrinsically quantum reason for
errors in the measurement of time. Secondly, if the measurement of time is
indeed riddled with errors, be it for classical or quantum reasons, this could
give rise to peculiar effects in the evolution of the quantum systems we study.

This second aspect we will be dealing with last in this chapter, and we shall
first devote our attention to the study of quantum clocks and stopwatches, in
order to understand better the intrinsically quantum aspects of the measure-
ment of time, by including in our description of quantum evolution a physical
system that plays the role of a clock. According to Peres, “A clock is a dy-
namical system which passes through a succession of states at constant time
intervals” [5]. We shall review the construction of such devices using quantum
systems, with different couplings that allow the clock to start or stop in such
a way that it works as a stopwatch to measure durations of processes. The
first historical landmark is a classic paper by Salecker and Wigner in 1958
[6], in which they proposed a clock to analyze the limitations which the quan-
tized nature of microscopic systems imposes on the possibility of measuring
distances between space–time events. In 1966, Baz’ [7, 8] proposed the use of
the Larmor precession of a spin in a weak magnetic field as a clock to measure
the duration of quantum collision events. Rybachenko [9] applied this method
to the case of particles in one dimension colliding with a rectangular barrier.
Many other theoretical works have followed Baz’ and Rybachenko, motivated
by conceptual difficulties with the tunneling time reviewed in several chapters
of this book, and because of the prospect of constructing high speed devices
based on tunneling semiconductor structures. Later on, Peres [5] applied the
Salecker and Wigner device for three different purposes: first, to measure the
time of free flight between two spatial points for the nonrelativistic case (the
relativistic case was subsequently treated by Davies [10]); second, for timing
the decay of excited atoms; and third, to control the duration of a physical
process.

In many of the proposals discussed above (proposed and further analyzed
by a number of authors [11, 12, 13]) the system of interest was an electron.
However, the experimental implementation of a quantum clock for electrons is
difficult and the interpretation of the results may not be clear. In fact, a good
part of the wide range of different viewpoints regarding this problem is due to
the ultrashort experimental times involved (see Chap. 11). Motivated by this
problem, some researchers have used existing thin-film technology [14, 15, 16]
to realize and operate an optical Larmor clock based on the analogy between
tunneling electrons and evanescent electromagnetic waves. Open questions
and fundamental aspects such as clock precision, superluminal times, and
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nonclassical properties of evanescent photons, are being elucidated by these
optical quantum clocks.

An important problem with many practical and scientific applications [17]
that will not be treated here is clock synchronization. This problem is deeply
important in modern technology and its formulation is very simple: “determine
the time difference between two spatially separated clocks” [17, 18, 19].

8.2 What is a Clock?

As we stated in the introduction a good definition of a clock can be found in
the article by Peres [5]: “A clock is a dynamical system which passes through
a succession of states at constant time intervals.” In this definition, we find
no reference to the dynamical law governing the motion of the system. The
operational definition given defines time according to the states of the clock
dynamics. In fact we can think the other way around, that is to say, a given
definition of time interval according to some system implies a dynamical law
as discussed in [20].

In the definition given above it is important to take into account that
the clock is by itself “a dynamical system”: this means that the clock has a
dynamical variable, the pointer, with a time dependence so simple that one
can infer directly the value of t from the pointer position [21]. For example, in
a classical clock the time dependence of the pointer is periodic and is given by
the angle θ = ωt(mod 2π). In quantum mechanics the pointer, as a dynamical
variable, must be represented by an operator, which implies that any quantum
measurement of such an angle θ will have a spread. The relation, if any exists,
between the spread of this pointer variable and the energy of the system being
studied could be termed “time–energy” relation, which, however, will be of
a very different kind from the one that quantum mechanics specifies for any
pair of operators, Â and B̂, obeying the commutation relation [Â, B̂] = i�
(see Chap. 11). The problem of defining an uncertainty principle for energy
and time, and the meaning we can give to it is then a fundamental question
for these devices.

Let us center our attention on the measurement of a time quantity with
a clock. The quantum clock will in the course of its time evolution exchange
some energy with the system for which we want to extract some characteristic
time, for instance the time of flight of a particle between two detectors. The
exchange of energy between the clock and the system will eventually modify
the system’s state and its later evolution, so that we can ask whether the
time measurement is related to the system or, rather, whether it is a feature
of the clock–system complex. If we think of a sequence of time measurements
in which the coupling between the clock and the system varies over a range
from large to small values of the coupling constant, the sequence of time values
so obtained will ideally reach an almost constant value for sufficiently small
values of the coupling constant (perturbative regime). When this occurs the
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limiting time property is regarded as intrinsic to the system time property of
the combined clock–particle system.

The conditions to be fulfilled in order to give some intrinsic character to a
time measurement are discussed in [5] in the context of time-of-flight measure-
ments. It was found there that the time interval between two spatial points is
well defined although the time of passage through a spatial point is uncertain.
The fact that the disturbance produced by the clock is inversely related to the
time resolution of the clock imposes a limitation on the accuracy with which
particle velocities can be measured over a given distance. Whence it follows
that in this case the time measurement is more adequately understood as a
particle–clock property, rather than as a particle property.

All of the clocks that we are going to discuss are constructed by coupling
one extra degree of freedom to the system. Depending on the nature of the
coupling Hamiltonian, we have different types of quantum clocks. Essentially,
they are all described by a Hamiltonian that contains the system degrees of
freedom and a coupling Hamiltonian that couples the degrees of freedom of the
clock with those of the system. Let us denote the Hamiltonian of the system
by Ĥs(x, px), with x a spatial coordinate and px the conjugate momentum.
The full Hamiltonian Ĥ is given by Ĥ = Ĥs + Ĥc−s with Ĥc−s the coupling
Hamiltonian of clock and system (notice that the clock normally will only
evolve when some condition is fulfilled by the system). This Hamiltonian is
a function of the clock coordinates, z and pz, say, as well as the particle
coordinates x and px.

8.3 The Salecker–Wigner Clock

As mentioned in the introduction of this chapter, the first historical landmark
in the construction of a quantum clock was a theoretical paper written by
Salecker and Wigner [6], where they proposed a microscopic clock to measure
distances between space–time events (in fact, they examined several alterna-
tives, with a view to the limitations on accuracy due to quantum behavior).

In this section we will address the mathematical description of a quantum
clock and study a more realistic case studied by Peres [5, 22]. We will also
discuss some of its applications to measuring characteristic and event times
(for definitions of characteristic and event times see, e.g., [23]).

8.3.1 Mathematical Description of a Quantum Clock

As is well known, in the Hamiltonian formalism t is a parameter, not a dy-
namical variable. However, it is possible to find dynamical variables which
depend linearly on t in such a way that we can infer the value of t by looking
at them. For example, the position of the hand of a clock is not the time
parameter but depends on it in a very simple manner: the angle θ swept
out by the hand of the clock is a simple function of t, i.e., θ = ωt (mod2π).
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The canonical variable conjugate to this angle is the so-called “action,” J ,
which always has dimensions of angular momentum.

In quantum mechanics both these variables will be associated to opera-
tors in a Hilbert space (for details, see the review of Carruthers and Nieto
[24]). Let Θ̂ and Ĵ be the operators representing angle and action (or angular
momentum), respectively. If one defines the range of θ from −∞ to ∞ then
both operators can be regarded as conjugate and they satisfy the canonical
commutation relation

[Θ̂, Ĵ ] = i�. (8.1)

However, Ĵ is self-adjoint only in the subspace of periodic functions with
period 2π. Accordingly, we introduce a periodic coordinate θ on the inter-
val [0, 2π] in such a way that the Hilbert space in the angle representation
consists of the square-integrable and differentiable functions f of θ satisfying
f(0) = f(2π) [24]. Of course, this raises serious problems for the status of the
commutation relation (8.1), as is well known, but we shall not be concerned by
those here, since they can be remedied by the use of positive operator valued
measures (e.g., see [25], or the short description of POVMs in Chaps. 3 and
10).

The eigenvalue equation of the angle operator Θ̂ is

Θ̂|θ〉 = θ|θ〉 ,

where the eigenstates {|θ〉} form a continuous orthonormal basis satisfying
〈θ|θ′〉 = δ(θ− θ′). On the other hand, the eigenvalue equation for the angular
momentum operator Ĵ reads

Ĵ |m〉 = �m|m〉 ,

with m = 0,±1,±2, . . ., and the basis {|m〉} satisfies the corresponding or-
thonormalization relation, i.e. 〈m|m′〉 = δm,m′ .

As pointed out by Hilgevoord [21, 26], the formal analogy with the position
and momentum operators in the coordinate representation is very close. In the
θ representation the states |θ〉 and |m〉 are given by the Dirac’s delta function

〈θ|θ′〉 = δ(θ − θ′)

and “plane wave” relations

um(θ) = 〈θ|m〉 = (2π)−1/2eimθ ,

respectively. In particular, using the closure relation in {|m〉}, we can write

|θ〉 = (2π)−1/2
∞∑

m=−∞
e−imθ|m〉 . (8.2)

The dynamics of the clock is governed by the Hamiltonian Ĥc = ωĴ , where
ω is a constant frequency. Clearly we have
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Ĥcum(θ) = −i�ω
∂

∂θ
um(θ) = m�ωum(θ) . (8.3)

In particular, Ĥc is the generator of translations in time by means of the
unitary operator Û(t) = e−iĤct/�. Taking into account the expression for |θ〉
given above, it is easy to show that

Û(t)|θ〉 = e−iĤct/�|θ〉

= (2π)−1/2
∞∑

m=−∞
e−imθ−imωt|m〉

= |θ + ωt〉 . (8.4)

And this is just a clock: the evolution operator e−iĤct/� advances the “hand”
of the clock through successive orthogonal states at constant angular velocity.
Notice that 〈θ|Û(t)|ψ〉 = ψ(θ, t) = ψ(θ − ωt, 0).

8.3.2 The Quantum Clock Analysis of Peres

Peres [5, 22] studied a more realistic case than the one considered in the
subsection above. He restricted the sum in (8.2) to values of m satisfying −j ≤
m ≤ j, where j is a positive integer and considered the set of orthonormal
states

|k〉 = N−1/2

j∑

m=−j
e−i2πkm/N |m〉

with k = 0, 1, ...., N − 1 and where N = 2j + 1 is the total number of states
of our clock. The associated wave functions in the θ representation are

vk(θ) = 〈θ|k〉 = N−1/2

j∑

m=−j
e−i2πkm/Num(θ). (8.5)

According to (8.4) the time evolution of these states satisfies

Û(t = τ = 2π/Nω)vk(θ) = vk+1(modN)(θ) ,

or, in a slightly different notation, vk(θ, τ) = vk+1(modN)(θ, 0), and they are
eigenfunctions of the clock time operator

T̂c ≡ τ

N−1∑

k′=0

k′P̂k′ (8.6)

with eigenvalues kτ . The projection operators P̂k′ satisfy P̂k′vk(θ) = δk′,kvk(θ).
For large N , the basis function vk(θ) has a sharp peak of width 2π/N at θ =

k(2π/N). The states with wave functions vk(θ, lτ), with l an integer modulo N ,
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are mutually orthogonal. Since τ = 2π/Nω is also the time resolution of the
clock, the functions defined in (8.5) can be understood as pointing to the kth
hour with an uncertainty of 2π/Nω. Another important property is that the
expectation value of the clock Hamiltonian Ĥc in the clock state (8.5) is zero,
from which it can be shown that for large values of j the energy uncertainty is
given by ΔĤc = (π�/

√
3τ). Peres compares this quantity with the maximum

value of the energy, π�/τ , and infers that this clock is basically a nonclassical
object. As was only to be expected, the uncertainty product relation holds
true, τΔĤc ≥ �/2. A more severe condition has been obtained by Hilgevoord
and Uffink [21] (see also the contribution of P. Busch to this volume).

In the next subsections we will show some of the applications [5, 10, 12,
13, 27, 28], of the Salecker–Wigner clock to the measurement of characteristic
times, such as the time of flight of a particle, the mean dwell time, or the
lifetime of an excited state. We will also show how this clock has been used
to measure event times, in particular the arrival time of a free particle in
a one-dimensional experiment [13]. We shall consider other variants of the
Salecker–Wigner clock in Sect. 8.5.2.

8.3.3 Time-of-Flight Measurements

Peres [5] applied the clock devised by Salecker and Wigner to measure the
average time that particles spend in some specific region of space, for an
ensemble consisting of a large number of identically prepared, single-particle,
one-dimensional, stationary-state scattering experiments.

The classical picture associated with this measurement process is that of
a stopwatch that runs only whenever the particle happens to be in the region
of interest. Given this image, a convenient Hamiltonian for the particle (with
incident kinetic energy E = �

2K2/2M in the absence of the clock) and the
clock is

Ĥ = Ĥp + Ĥc−p = Ĥp + ĤcΘ(x)Θ(d − x)

= − �
2

2M
∂2

∂x2
− i�ωΘ(x)Θ(d − x)

∂

∂θ
. (8.7)

Here the region of interest is 0 ≤ x ≤ d and the Heaviside functions Θ indicate
that the clock runs only when the particle “is” between 0 and d.

As initial state of the clock, Peres chose v0(θ) (see (8.5)). However, for
simplicity, he first solved the clock’s equation of motion for an eigenstate um
of Ĵ , and he then added the solutions for all m to get the solution associated
with v0(θ). As we stated in the preceding subsection, for large values of N
this state is sharply peaked at θ = 0. By taking (8.3) into account, for each m
in the sum over m the second term in the Hamiltonian (8.7) can be replaced
numerically by the constant m�ωΘ(x)Θ(d − x), and hence the restriction of
the Hamiltonian in (8.7) to this sector represents an otherwise free particle
colliding with a square potential barrier of height Vm = m�ω and length d.
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The textbook solution of this stationary scattering problem, outside the region
of interest, 0 ≤ x ≤ d, is given by

ΨmK (x) =
{

eiKx + Rm(K)e−iKx, if x ≤ 0
Tm(K)eiKx, if x ≥ d

. (8.8)

We assume that “initially” the particle and clock are not coupled so that the
wave function of the entire system factorizes:

Ψi(x, θ) = eiKxv0(θ) = eiKx
1

N1/2

j∑

m=−j
um(θ) . (8.9)

The term Ĥc−p in (8.7) couples the particle and the clock coordinates in
such a way that the wave function of the system is no longer factorizable in
coordinates x and θ. Therefore, the final (stationary) wave function must be
written as Ψ(x, θ) exp(−iEt/�) with

Ψ(x, θ) =
1

N1/2

j∑

m=−j
ΨmK (x)um(θ) .

Clearly, E = �
2K2/2M .

Peres focused on the case in which the maximum available energy of the
clock is negligible compared with the energy of the particle, i.e., E � Vj =
j�ω. This means that the measurement produces negligible disturbance on
the particle. In this situation, we can approximate Rm(K) � 0 and Tm(K) �
|Tm(K)| exp[i(Km −K)d], under the condition that |Tm(K)| � 1 and Km =
�
−1[2M(E − m�ω)]1/2. In this case, the phase shift caused by the barrier

is (Km − K)d � Mωd/�K and the final (stationary) wave function for the
particle plus clock system is

Ψf (x, θ) � eiKx
1

N1/2

j∑

m=−j
e−imMωd/�Kum(θ)

= eiKxv0(θ −Mωd/�K) ,

for x > d (transmitted wave), and approximately zero for x ≤ 0 (there is no
reflected wave). Initially (see (8.9)) this function was peaked at θ = 0 and now
it is peaked at θ = Mωd/�K, indicating the time-of-flight τT (0, d) = Md/�K
through the region of interest. Note that this result gives the expected velocity
�K/M for an unperturbed particle with energy E = �

2K2/2M . Note also that
combining the condition for negligible perturbation of the particle, E � j�ω,
and for high resolution of the clock, τT (0, d) � τ , one obtains the criterion
that the clocked flight path must be very large compared with the de Broglie
wavelength, i.e., d � 2π/K, if one wants to measure accurately the velocity
of a free particle.
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Leavens [12] applied this scheme to calculate the mean dwell time (for
details see Chap. 2) τD(0, d;E) for a particle scattered by a rectangular barrier
V (x) = V0Θ(x)Θ(d − x). The original expression postulated by Büttiker [11]
for the mean dwell time, for the special case of stationary-state scattering, is

τD(0, d;E) =
1

�K/M

∫ d

0

dx|ΨK(x)|2 , (8.10)

where E = �
2K2/2M is the energy of the particle, �K/M is the incident

probability current density and ΨK(x) exp(−iEt/�) is the stationary-state
wave function (see also 8.4.1 below).

Applying the quantum clock to this case means adding the barrier po-
tential energy to the Ĥp part of the Hamiltonian (8.7). The result is that
the coefficients Tm(K) and Rm(K) in (8.8) become the transmission and re-
flection probability amplitudes for the rectangular barriers Vm = V0 + m�ω
(m = −j, ...., j). It should be noted that the second term in the Hamilto-
nian (8.7) does not distinguish between transmitted and reflected electrons.
Hence, repeating the previous analysis with the new potential barriers Vm
should lead to the clocked mean dwell time τcD(0, d;E) simply by calculat-
ing the expectation value of the clock time operator (8.6) in the final state
Ψf (x, θ) minus that in the initial state Ψi(x, θ). As a preliminary to such a
calculation consider the example of an opaque rectangular barrier (κ0d � 1
where κ0 ≡ �

−1[2M(V0 − E)]1/2). Büttiker’s expression (8.10) gives

τD(0, d;E) =
�

V0

(
E

V0 − E

)1/2

. (8.11)

A necessary condition for negligible perturbation of the particle scattering
process of interest by the clock during the measurement is V0−E � j�ω. Using
τ = 2π/(2j+1)ω and (8.11) this condition becomes τD(0, d;E) � τ/4 which is
incompatible with the condition τT (0, d) � τ for good time resolution. Hence,
for a particle scattered by an opaque barrier the mean dwell time as measured
with a Salecker–Wigner clock could be significantly different from the intrinsic
quantity which, in principle, could be measured by an ideal apparatus.

To avoid this problem, Leavens [12, 27] introduced the concept of calibra-
tion of the clock. To do this, consider an ensemble of a large number of freely
evolving Salecker–Wigner quantum clocks (Ĥ = Ĥc). Each clock is prepared in
the same initial state χ(θ, ti) ≡ exp(−iĤcti/�)v0(θ). The averaged free quan-
tum clock value for the elapsed time Δt ≡ t− ti at time t, namely tcfree(Δt),
is obtained by subtracting the expectation value of the clock time operator
T̂c in the initial state from its expectation value in the time-evolved state:

tcfree(Δt) ≡ F (Δt) ≡ 〈χ(θ, t)|T̂c|χ(θ, t)〉 − 〈χ(θ, ti)|T̂c|χ(θ, ti)〉 .

The clock parameters are chosen such that F is a monotonic function of Δt
in the temporal interval of interest. Then the inverse function F−1 exists and
can be used to calibrate the clocked (c) dwell time
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τcD(0, d;E) ≡ 〈Ψf (x, θ)|T̂c|Ψf (x, θ)〉 − 〈Ψi(x, θ)|T̂c|Ψi(x, θ)〉 ,

which is not necessarily accurate, to obtain the calibrated-clock (cc) value

τccD (0, d;E) ≡ F−1[τcD(0, d;E)] .

With this calibration, τ has lost its meaning as the time resolution of the
clock. There is no need to impose τT (0, d) � τ and there is no advantage to
choosing a very large value of Nω (there is an example in [27] with N = 3).
For an arbitrary barrier, the calibrated clock result τccD (0, d;E), for the dwell
time converges to the intrinsic one (8.10) when the limit �ω → 0, i.e., when
a negligibly small perturbation energy �ω is taken. This is possible if the
initial clock state is suitably chosen, i.e., χ(θ, ti) with ti not too close to kτ
(k = 0, 1, ..., N − 1) so that F is monotonically increasing and linear in Δt for
Δt/τ � 1.

The same calibration procedure [27] can be applied to obtain expressions
for τT and τR (see Chap. 2), the mean times that particles that will finally
be transmitted or reflected, respectively, spend in the region of interest. The
complete ensemble of clocks can be distributed into two subensembles, one
for transmitted and one for reflected particles. The expressions for these
times are identical to those obtained by Rybachenko [9] using Larmor pre-
cession, by Iannacone and Pellegrini [29] using a path integral technique, by
Steinberg [30] using the weak measurement theory of Aharonov and cowork-
ers [31, 32], and by Brouard et al. (see [33] and the Introduction of this
book) using a single formal framework based on projection operators (BSM
approach).

The times τT and τR that apparently emerge naturally from the theoreti-
cal analysis can have unphysical properties. For example, in [27] Leavens and
McKinnon show that the mean transmission speed at the center of the bar-
rier for electrons of energy 1 eV incident on a rectangular barrier of height
V0 = 10 eV and width d = 5 Å, is about four times the speed of light. It can
be argued that this does not matter because the calculation is based on the
Schrödinger equation and that upon applying the Dirac equation such super-
luminal effects would disappear. The first analysis for timing Dirac particles
using a model quantum clock was made by Davies [10]. He showed, with an
analysis analogous to that of Peres for the nonrelativistic case, that the ve-
locity of a free relativistic particle can be measured using a Salecker–Wigner
clock. Following [10, 27], Leavens and Sala Mayato [28] used the Bohm trajec-
tory and Salecker–Wigner clock approaches to timing quantum particles to de-
rive expressions for the mean transmission and reflection times for Schrödinger
and Dirac electrons scattering in one dimension from an electrostatic potential
barrier. They found realistic situations, involving barrier heights and incident
electron kinetic energies both many orders of magnitude less than the rest
energy mc2, for which the calculated mean transmission times imply superlu-
minal velocities for Schrödinger electrons. To the question of whether or not
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this is an artifact of using the nonrelativistic Schrödinger equation the answer
is “yes” for the trajectory approach and “no” for the quantum clock approach.

8.3.4 Other Examples

Peres [5, 22] applied the Salecker–Wigner design for a quantum clock to other
fundamental problems. Examples are the lifetime of an excited state and a
prescription for controlling the duration of a physical process. We briefly re-
view here the first one and for a detailed account of the second recommend
the references cited above.

In the first example, the Hamiltonian associated with the problem is

Ĥ = Ĥa + P̂0Ĥc .

Here, Ĥa is the Hamiltonian of the atom, P̂0 is the projection operator for
the initial undecayed state and Ĥc is the clock Hamiltonian as usual. The
projection operator P̂0 permits the clock to run only when the state of the
system is the initial one. It is stopped for any other state.

For the Hamiltonian of the atom, Peres used a very simple exponential
decaying model given by

Ĥa = Ĥ0 + V̂ ,

where Ĥ0 has just one discrete eigenstate φ0, with an energy E0 > Emin,
which is included in the domain of the continuous spectrum

Ĥ0φ(E) = Eφ(E), E > Emin .

The eigenstates are normalized according to 〈φ(E)|φ(E′)〉 = δ(E − E′)
(φ0 is orthogonal to all the φ(E) states). Peres also assumed that there are
no transitions between states belonging to the continuous spectrum, i.e., the
only nonvanishing matrix elements of V̂ are

V (E) = 〈φ0|V̂ |φ(E)〉 ,

and that these matrix elements have a slow dependence on E.
Subject to all these assumptions and coupling the atom to the clock (which

essentially shifts the initial energy from E0 to E0 + n�ω) he showed first
(for details see references [5, 22]) that there is a lower limit for the lifetime
associated with the time resolution of the clock

τ � �
d[log |V (E0)|2]

dE0
.

Peres pointed out that finer resolution will eventually change the decay law to
a Zeno effect in the limit τ → 0. Second, the probability of finding the clocks
stopped at time tk = kτ = 2πk/Nω is in accordance with the exponential
decay law.
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Aharonov and coworkers [13] have applied the Salecker–Wigner clock (“toy
model”) to measure the time of arrival in one dimension of a free particle to a
given point x = xA (for an extended treatment of this problem, see [34], Chap.
10 and references therein). In classical mechanics particles follow definite tra-
jectories, so the meaning of the distribution of arrival times for an ensemble
of particles at a given place is clear. In standard quantum mechanics we have
no such concept of trajectory, so the meaning of arrival time is rather contro-
versial. Actually, [13] provides a negative conclusion, claiming that the time
of arrival cannot be precisely defined and measured in quantum mechanics.
The toy model of Aharonov et al. is based on the classical Hamiltonian:

H =
1

2m
P 2 + Θ(−x)Pc .

In this example the particle is moving in one dimension and the clock runs
only when the particle is to the left of x = 0. The equations of motion for the
particle’s position x and for the pointer of the clock xc are

ẋ =
P

m
, Ṗ = −Pcδ(x)

ẋc = Θ(−x), Ṗc = 0

As t → ∞ the clock shows the time of arrival,

xc(∞) = xc(t0) +
∫ ∞

t0

Θ(−x(t))dt .

In the classical case the back reaction on the particle can be made negligible
by choosing Pc → 0. Then the undisturbed solution for the particle is given
by x(t) = x(t0) + (P/m)(t− t0) and the clock finally reads

tA = xc(∞) = −m
x(t0)
P

,

which is the classical result for the time of arrival measured from t0. However,
in quantum mechanics one expects an important back reaction because in the
limit Δxc = ΔtA → 0, Pc must have a large uncertainty, i.e., the measurement
affects strongly the particle.

Aharonov et al. computed a wave function for the quantum problem and
showed that the probability to stop the clock takes the form

(
E + Ec

E

)1/2
[

2
√
E√

E +
√
E + Ec

]2

,

where E and Ec are the energies of the incident wave function and the clock,
respectively1 (for a more accurate treatment of the quantum system and com-
ments on the way of arriving at this formula, see [38]). This probability is
1 Allcock obtained essentially this result [35, 36, 37].
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almost one only if E/Ec > 1. On the other hand, the minimum uncertainty
principle for the clock implies that the possible values obtained by Ec are of
order �/ΔtA if the average clock energy goes to zero (as in the classical case),
so in order to trigger the clock the relation

〈E〉ΔtA > � (8.12)

must be satisfied. In other words, this inequality implies large uncertainties
for low-energy wave packets. Actually, Baute et al. [39] have showed that the
limitations described by the inequality obtained above using this toy model are
already present in the intrinsic time-of-arrival distribution of Kijowsky [40].
Notice however that the viewpoint of Aharonov et al. is markedly different:
(8.12) is understood as a dynamical limit on the accuracy of the measurement
of time, totally unrelated to the measurement of any other quantity, thus being
conceptually distinct from a kinematical uncertainty limit, which relates the
errors in the measurement distributions of two observables.

In the same reference [13], the authors consider a different model where
the particle detector consists of a number of two-level spin degrees of freedom,
and arrive at the same difficulty found for the previous model. The behavior
of this spin model has been critically examined in [34].

Further analyses of the effect of the back reaction of the clock on the
system can be found for instance in [41].

8.3.5 Simultaneous Measurement of Time and Energy

Since Arthurs and Kelly [42] first proposed a model for the simultaneous
measurement of position and momentum of a quantum particle, their idea
has been widely used and extended. A particularly fruitful avenue has been
to consider the Arthurs–Kelly model as a generator of quasidistributions in
phase space [43, 44, 45, 46, 47, 48]. These quasidistributions are then used to
generate probability distributions for observables which are representable as
functions on phase space [49, 50, 51, 52].

Kochánski and Wódkiewicz [53] suggested using these quasidistributions
to define “operationally” a time of arrival distribution, thus providing a new
kind of quantum clock. The reading of the clock is a pair of numbers, which
more or less faithfully reflect the position and momentum of the underlying
quantum particle, and from this dual reading a time of arrival is computed.
On analyzing further this “indirect” quantum clock [54], it became apparent
that the result is not covariant. That is, the measurements with this clock do
not flow smoothly with parametric time, and are dependent on the choice of
initial instant for parametric time. A number of other operational definitions
were examined by Baute et al. [54], and they found that within a wide class
it was not feasible to have both covariance and positivity for the distribution
of times of arrival.

Therefore, a new kind of quantum clock was proposed [54], by coupling two
additional degrees of freedom to the quantum particle whose time-of-arrival
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distribution is sought for. This coupling was performed in such a way that
one of the additional pointer variables would directly record an estimate of
the time of arrival. The resulting distributions were covariant and positive,
and were found to be more or less complicated convolutions with Kijowski’s
distribution of times of arrival for the free particle case (for a discussion of
Kijowski’s distribution, see Chap. 10).

This latter result is of course more general: whenever we couple a clock to
a physical system we should expect that the distribution of measured times
should be a coarsening of the corresponding ideal distribution of times, were
this to exist.

Notice that the quantum clocks presented in this subsection are not of
the type of the Salecker–Wigner clock. Nonetheless, they share the common
characteristic that the reading of the time evolution of the system is performed
on the clock or ancillary variables. This common trait distinguishes them
clearly from the set of clocks we shall next examine, namely, the family of
Larmor clocks.

8.4 The Larmor Clock

One of the most popular clocks is the Larmor clock.2 Consider first a classical
particle with a nonzero magnetic moment. If the particle enters in a region
where a uniform magnetic field is applied, the component of the magnetic
moment perpendicular to the field will precess with the Larmor frequency, and
the precession will stop as soon as the particle leaves the region. This suggests
the use of the magnetic moment as a stopwatch dial to measure the duration
of the particle stay in the selected region. Baz’ translated directly this idea to
a quantum system [7, 8]. To determine the time spent in a region r < R by a
spherically symmetric beam of monoenergetic spin 1/2 particles, polarized in
the x-direction and incident on a central potential of finite range r0 < R, he
imagined an infinitesimal uniform magnetic field (to perturb minimally the
particle by the presence of the clock) applied in the spherical region along the
y-axis. The collision time was then defined as the ratio between the average
precession angle and the Larmor frequency ωL. Rybachenko [9] applied the
same concept to obtain mean Larmor precession transmission and reflection
times for particles incident on a one-dimensional barrier of support (a, b) with
the magnetic field covering the interval (x1 < a, x2 > b) as

τyA(x1, x2) = −2
�

lim
ωL→0

〈sy〉A
ωL

. (8.13)

Here and in the following the shorthand notation A = T,R will denote “trans-
mission or reflection” depending on the case. The averages of the spin compo-
nent sy are obtained from the transmitted and reflected waves, respectively.

2 This section is written with J. G. Muga and S. Brouard.
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Later Büttiker [11] revisited the Larmor clock, which has subsequently
received much further attention, due to possible applications in the description
of characteristic times for quantum processes in ultrafast electronic devices,
and also because of its importance to fundamental questions concerning the
measurement of time-like quantities in quantum mechanics.

Steinberg reviews several experiments related to the Larmor clock in Chap.
11. Experiments that realize quite closely the ideal conditions of the gedanken
Larmor clock have been performed quite recently by Hino et al. [55]. They have
succeeded in measuring precisely spin precession angles of neutrons tunneling
through a Permalloy45 (Fe55Ni45) ferromagnetic film.

8.4.1 Büttiker’s Analysis of the Larmor Clock

Büttiker considered a stationary wave for a particle of mass M with energy
E = p̂2/2M under the influence of a rectangular potential V̂ (y) = V0χ(ŷ),
where y is the spatial coordinate and χ the characteristic function for the
barrier region (a, b) of width d = b−a [11]. The particle has spin �/2, (modulus
of the) magnetic moment μ and is fully polarized in the x-direction in the
incident beam. In the barrier region there is a uniform magnetic field in the
z-direction, B = Bez, with ez the unit vector in the z-direction (Fig. 8.1).
The (matrix) Hamiltonian of the system is given by

Ĥ =
p̂2

2M
1̂ + χd(ŷ)(1̂V0 + μB · σ) ,

where 1̂ = diag(1, 1), and σ = (σ̂x, σ̂y, σ̂z) are the Pauli matrices, given by

σ̂x =
(

0 1
1 0

)
, σ̂y =

(
0 −i
i 0

)
and σ̂z =

(
1 0
0 −1

)
. (8.14)

Therefore the Hamiltonian may be written as

Ĥ =
p̂2

2M
1̂ + χd(ŷ)(1̂V0 + μBσ̂z) (8.15)

and acts on a spinor

Ψ =
[
ψ+

ψ−

]
.

The Hamiltonian (8.15) is diagonal in the spinor basis and therefore the
scattering problem can be solved for each of the spin components (−�/2 and
+�/2) separately. Let us remark that the quantum particle will in principle
be deflected by the magnetic field, so that consideration of the motion in only
one dimension is an approximation. In the small field limit, however, the most
important effect of the magnetic field is to change the effective barrier height
by ∓�ωL/2, and the deflection can be ignored.

For each spinor component, the problem is solved in the standard way,
taking as incident wave eiky , as reflected wave R±e−iky and as transmitted



250 R. S. Mayato et al.

B = B0
 ^

V0

z

y

x

z

Fig. 8.1. Schematic graph representation of the Larmor clock

wave T±eiky . Then we impose the usual matching conditions with the wave
inside the barrier, that has the form B±eκ±y + C±e−κ±y (we are assuming
V0 > E). In these formulae, k =

√
2mE/�, with E the energy of the incident

particle, and κ± = (k2
0 − k2 ∓mωL/�)1/2, where k0 =

√
2mV0/�.

The expectation values of the spinor components can be obtained analyti-
cally. The transmission amplitude and probability in the absence of magnetic
field are given, respectively, by

T = |T |eiδφe−ikd, T = |T |2 =
1

1 + [(k2 + κ2)2/4k2κ2] sinh2(κd)
,

where δφ is the “phase increase” across the barrier,3

tan(δφ) =
k2 − κ2

2κk
tanh(κd) .

To obtain T± , δφ± and T± we replace κ by κ± in the expressions for T , δφ,
and T .

After some manipulations, the spin expectation values for the transmitted
component of the particle yield

〈sz〉T =
�

2
〈Ψ |σz |Ψ〉 =

�

2
T+ − T−
T+ + T−

,

〈sy〉T =
�

2
〈Ψ |σy |Ψ〉 = −� sin(δφ+ − δφ−)

(T+T−)1/2

T+ + T−
, (8.16)

〈sx〉T =
�

2
〈Ψ |σx|Ψ〉 = � cos(δφ+ − δφ−)

(T+T−)1/2

T+ + T−
.

In the small field limit, the precession time for transmission is thus

τyT = −m

�κ
∂κδφ , (8.17)

3 Comparing with (2.58), the total phase of the transmission amplitude is ΦT =
δφ − kd. Notice the difference between ΦT and δφ. In particular, �dΦT /dE is
the time delay (2.101) [or second summand in (2.94)], whereas �dδφ/dE is the
extrapolated phase time (2.94). These times differ from each other by the free
motion term Md/k�.
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which is Rybachenko’s result. However, Büttiker argued that the conventional
Larmor precession does not apply in the presence of tunneling. Spin up and
spin down components feel different barrier heights, which leads to different
transmittances and to an additional spin rotation in the direction of the ap-
plied field. He associated a new time τz,T with this rotation,

〈sz〉T =
�

2
ωLτzT , (8.18)

which is the most important effect for an opaque barrier. Taking the small
field limit one obtains,

τzT = − m

2�κ
∂κ ln T . (8.19)

The complete motion of the polarization during the barrier traversal is re-
flected, according to Büttiker, in the x-component of the polarization,

〈sxT 〉T =
�

2
(1 − ω2

Lτ
2
xT ) . (8.20)

Since 〈sx〉2T + 〈sy〉2T + 〈sz〉2T = �
2/4, it follows that

τxT = (τ2
yT + τ2

zT )1/2 . (8.21)

For the reflected part of the wave similar expressions are found,

τyR = τyT , (8.22)
τzR = −τzT T /R , (8.23)
τxR = (τ2

yR + τ2
zR)1/2 . (8.24)

For the square barrier the precession time equals the dwell time, τd = τyA
[11]. This is a particular feature of the rectangular or symmetric barriers that
does not hold in general for unsymmetrical barriers, as shown, e.g., by Leavens
and Aers [56]. The dwell time τd is defined as the ratio of

∫ b
a dy |ψ(y)|2 to the

incident flux JI = �k/m (see (8.10)). Büttiker stressed that the mean dwell
time is not equal in general to the “extrapolated phase time”, see (2.94), which
in the present notation is given by

τPhT (a, b) = � dδφ/dE , (8.25)

even though they may be comparable for energies above the barrier. More on
their relation in 8.4.3 below. For small energy τPhT diverges whereas τyT tends
to zero. Both quantities share the property of becoming independent of d for
opaque barriers (this is the Hartman effect, see Sect. 2.4.1), in contrast with
the linear dependence of τxT .
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8.4.2 Generalizations and Relations to Other Approaches

The discussion carried out in the previous subsection is appropriate for rect-
angular barriers and for a magnetic field applied strictly in the barrier region.
Leavens and Aers generalized Büttiker’s treatment for arbitrary barriers and
for a magnetic field confined to only part of the potential (“local Larmor
clock”) [56, 57, 58]. They also combined the precession and rotation times
into a single complex time τcomA = τprecA − iτrotA . To obtain a compact expres-
sion it is convenient to introduce the auxiliary barrier potential

Ṽ (y) ≡ V (y) + ΔV χ(y1, y2) , (8.26)

so that

τcomA (k; y1, y2) = i�
∂ ln |A|2
∂ΔV

∣∣∣
ΔV=0

. (8.27)

In fact this expression is applicable for arbitrary y1 and y2, inside or outside
the barrier.4

These complex times were also obtained using the path integral analysis
of Sokolovski and Baskin [59] reviewed in Chap. 7. It is convenient for later
reference to write out the explicit forms of the real and imaginary parts,

τprecA (k; y1, y2) = −�
∂ΦA
∂ΔV

∣∣∣
ΔV=0

, (8.28)

τrotA (k; y1, y2) = −�
∂ ln |A|
∂ΔV

∣∣∣
ΔV=0

, (8.29)

where A = |A| exp(iΦA). We shall use the term “Büttiker–Landauer times”
for the moduli of these complex quantities, τBLA = |τcomA |. In the opaque
barrier limit τBLT coincides with the “traversal time” obtained by Büttiker
and Landauer using semiclassical (WKB) arguments, see also [60], or as the
time characterizing the transition from sudden to adiabatic regimes in an
oscillating barrier, τBLT = Md/�κ for the opaque square potential.

It is interesting to note that for an electron colliding with a double sym-
metric barrier, the infinitesimal magnetic field being confined to an arbitrary
region, the transmission time (8.27) for that region is real at resonance, that is
to say when the incident energy of the electron agrees with the quasienergies
of the well between barriers (see Fig. 8.2). In this case Leavens and Aers have
also shown that the local transmission speed can be larger that the speed of
light near the nodal points of the quasistationary wave functions in the well
region. This phenomenon does not take place for Dirac’s equation, however.

In [61] Golub, Felber, Gäler, and Gutsmiedl discussed the possibility of
adding a small imaginary part ΔVIm to the potential in a region of space so
that a mean dwell time could be obtained from the exponential decay of the
4 In this chapter the incident wave is always assumed to have positive momentum

so we skip the superscript “l” (left incidence) used in Chap. 2 for the reflection
amplitude R.
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Fig. 8.2. Double well barrier treated by Leavens et al

particle norm due to the absorption. Later Huang and Wang extended this
approach by defining absorption times for reflection and transmission [62]. As
for the Larmor clock analysis, the (now imaginary) perturbation is assumed to
be infinitesimal. The dwell time in the space region selected by the projector
D̂ =

∫ y2
y1

|y〉dy〈y| will determine the final absorption according to

|T |2 + |R|2 = exp(−τD/τc) , (8.30)

where the characteristic decay time is τc = −�/2ΔVIm. In the small ΔVIm
limit,

τD =
�

2
∂(|T (p;ΔVIm)|2 + |R(p;ΔVIm)|2)

∂(ΔVIm)

∣∣∣
ΔVIm=0

(8.31)

whereas, from the relation

|A(ΔVIm)|2
|A(ΔVIm = 0)|2 = exp(−τaA/τc) (8.32)

the absorption transmission and reflection times are defined as

τaA =
�

2
∂ ln |A(p;ΔVIm)|2

∂ΔVIm

∣∣∣
ΔVIm=0

. (8.33)

These absorption times are equal to the precession times of the Larmor clock
[62, 63], as may be seen by adding to the physical potential barrier the
auxiliary potential ΔV = ΔVRe + iΔVIm, and using the Cauchy–Riemann
conditions

∂TRe
∂ΔVRe

∣∣∣
δV=0

=
∂TIm
∂ΔVIm

∣∣∣
δV=0

=
2mπ

p
Im〈p−|D̂|p+〉|ΔV=0 , (8.34)

∂TIm
∂ΔVRe

∣∣∣
δV=0

= − ∂TRe
∂ΔVIm

∣∣∣
δV=0

= −2mπ

p
Re〈p−|D̂|p+〉|ΔV=0 , (8.35)

∂RRe
∂ΔVRe

∣∣∣
δV=0

=
∂RIm
∂ΔVIm

∣∣∣
δV=0

=
2mπ

p
Im〈−p−|D̂|p+〉|ΔV=0 , (8.36)

∂RIm
∂ΔVRe

∣∣∣
δV=0

= − ∂RRe
∂ΔVIm

∣∣∣
δV=0

= −2mπ

p
Re〈−p−|D̂|p+〉|ΔV=0 . (8.37)
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The subscripts Re and Im denote real and imaginary parts of the amplitudes
A or the potential ΔV . To obtain the last equalities in each of the equations
(8.34)–(8.37) in terms of scattering states |p±〉 [63] (see their definition, (2.22),
and properties in Chap. 2) use has been made of

dV̂

dΔV
= D̂(y1, y2) , (8.38)

and the relations between A and the on-shell matrix elements of the transition
operators, Sect. 2.2.5. These equalities allow to express the Larmor times also
in terms of the systematic projector approach of Brouard, Sala, and Muga
[33], see Chap. 1. Using (1.17), (2.26), (2.32), (2.42), and (8.34)–(8.37) one
finds that the complex times τADA for transmission and reflection,

τADA (p) ≡ 1
JI |A|2 〈p

+|ÂD̂|p+〉 , (8.39)

coincide with τcomA since their real and imaginary parts, corresponding to the
anticommutator and commutator of ÂD̂, coincide [63],

τ
[A,D]+/2
A =

1
JI |A|2 〈p

+|(ÂD̂ + D̂Â)/2|p+〉 = ReτADA = τprecA , (8.40)

τ
[A,D]−/2i
A =

1
JI |A|2 〈p

+|(ÂD̂ − D̂Â)/2i|p+〉 = ImτADA = −τrotA , (8.41)

note that ÂD̂ = [Â,D̂]+
2 + i [Â,D̂]−

2i . The projector approach provides a simple
way to derive some of the properties of the different Larmor times defined.
For example, since the symmetrized operators [Â, D̂]+/2 = (ÂD̂+ D̂Â)/2 are
not positive, the precession times may indeed be negative; the same holds true
for rotation times; from the relations D̂ = T̂ D̂ + R̂D̂ = [P̂ , D̂]/2 + [R̂, D̂]/2 it
follows that the complex times and their real parts (precession times) satisfy
the relation

τD(x1, x2) = |T |2τT (x1, x2) + |R|2τR(x1, x2) , (8.42)

which is not satisfied in general by the Büttiker–Landauer times, and whose
physical content or necessity has been much debated [56, 64, 65, 66], whereas
the contribution of the rotation times (associated with the operators [Â, D̂]−/2i)
adds to zero,

|T |2τrotT (x1, x2) + |R|2τrotR (x1, x2) = 0 . (8.43)

Also, since precession, rotation and complex times depend linearly on D̂, all
these times are additive, τ(y1, y3) = τ(y1, y2) + τ(y2, y3) for y3 > y2 > y1,
whereas the Büttiker–Landauer times (the moduli of the complex times) are
not. τBLA (y1, y2) is always positive but is not always a monotonically increasing
function of y2 [57].

A further connection between Larmor times and weak measurements [30]
is discussed in Chap. 11 by Steinberg.
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8.4.3 Relation to Phase Times

The relation between phase times and precession times is somewhat subtle.
Explicit expressions for phase and precession times for the square barrier
with the field confined between x1 < a and x2 > b show that τPhT (x1, x2) and
τprecT (x1, x2) do not coincide in general, see, e.g., [64]. The later is equal to the
former plus oscillatory terms that vanish in the large energy limit. Moreover,
by making the field region larger and larger both quantities tend to infinity.

It is sometimes stated, however, that phase and precession times are equal
for a barrier confined between a and b when the field is applied to the whole
space [62, 67]. Increasing the level of the potential function (from −∞ to ∞)
by a (real) amount ΔV for constant E is equivalent physically to decreasing
E for a constant potential. The particle’s momentum may in that case be
written as p = [2m(E −ΔV )]1/2, so that [62]

�
∂δφ

∂E
= −�

∂δφ

∂ΔV
. (8.44)

The left-hand side is the extrapolated phase time between a and b, whereas
the right-hand side resembles the real part of the complex time, but what is
its interpretation in terms of a precession? It is definitely not the precession
time between x1 = −∞ and x2 = ∞, which should be infinite, nor it is
the precession time when the field is applied in the barrier region only [63].
Huang et al. [67] could give it a meaning, computing the precession angle by
comparing the spin polarizations of the incident, transmitted, and reflected
waves right at the edges a and b of the barrier (contrary to the scattering
problem discussed so far, the polarization does not acquire a constant value
outside a selected region due to the omnipresent field). The procedure has
been however criticized on the grounds that in a real time-dependent setting,
the interference between incident and reflected components at the barrier edge
cannot be ignored and would not allow a separation of the total polarization
into “incident” and reflected components [58].

8.4.4 Wave Packets

All the previous Larmor times have been obtained from stationary states. Rig-
orously, it is necessary to examine physically realizable wave packets instead.
This resembles the need to study wave packet collisions to justify the cavalier
obtention of cross sections based on stationary scattering states. In fact, the
analysis shows, as in the scattering theory case, that the stationary results
are meaningful as components and/or limits of the wave packet results.

Assume that a wave packet with positive momentum impinges on the
potential, composed as in the stationary case by a barrier and an infinitesimal
field. Jaworski and Wardlaw used S-matrix perturbation theory to show that
the precession and rotation angles may be expressed as the real and (minus)
imaginary components of the complex quantities [68]
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τcomT =
1
PT

〈φin|Ŝ†F̂+ŜT̂D|ψin〉 (8.45)

τcomR =
1
PR

〈φin|Ŝ†F̂−ŜT̂D|ψin〉 , (8.46)

where Ŝ is the scattering operator introduced in (2.10) or (2.26), T̂D the
sojourn-time operator (2.69), φin the incoming asymptote, F̂± the projector
onto positive or negative momenta, and PR,T the reflection or transmission
wave-packet probability. Using (2.10) and (1.17), they may also be written in
the language of the BSM projector theory, Sect. 1.6.3, as

τcomA = τADA =
1
PA

∫ ∞

−∞
dt〈ψ(t)|ÂD̂|ψ(t)〉 . (8.47)

In the limit of a wave packet sharply peaked around a given momentum these
times reduce to the ones introduced in the stationary case (and similarly the
precession and rotation terms). By inserting resolutions of the identity in
terms of scattering states it can be shown that in the general case the relation
between wave packet and stationary results is given by [33]

ταA = P−1
A

∫ ∞

0

dp ταA(p)A(p)|φin(p)|2 , (8.48)

where α is any of the combinations of A and D, such as AD, [A,D]+/2, or
[A,D]−/2i.

8.5 Other Clocks

Following similar ideas to those presented above there are many different
proposals of quantum clocks. We consider two of them: the Faraday clock and
the micromaser clock and its variants.

8.5.1 The Faraday Clock

Several people have exploited the analogies between tunneling electrons and
evanescent electromagnetic waves to construct an optical clock [14, 15, 16,
69]. The first proposal was presented by Gasparian et al. [14]. They used
Faraday polarization rotation to measure the traversal and reflection times
of an evanescent electromagnetic wave in a slab and in a magnetorefractive
layered structure.

The Faraday effect is understood as follows: a linearly polarized electro-
magnetic plane wave (the results are also valid for a wave packet) enters the
slab (of length L, Faraday constant g and refractive index n0) along the x-axis
from the left at normal incidence. The electric field E in this incident wave
is orientated along the z-axis and a weak magnetic field B is applied along
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the x-direction across the slab. This magnetic field rotates the plane of polar-
ization of the light with respect to the original direction of polarization and,
additionally, generates ellipticity. Gasparian et al. [14] quantified both effects
through the complex angle θ given by

θ = θ1 − iθ2 ,

where, in terms of the complex amplitude of transmission T± = |T±| exp iψ±
(here the + and − signs correspond to the outgoing right and left polarized
light, respectively), the real part of the angle is

θ1 =
ψ+ − ψ−

2
,

corresponding to Faraday rotation, and the imaginary part of θ is

θ2 =
1
4

ln
T+

T−
,

which corresponds to the ellipticity ratio.
If one neglects the influence of the boundaries of the slab, the standard

Faraday rotation is

θ0 =
ωgBL

2cn0
= Ωτ0 , (8.49)

where τ0 = Ln0/c is the time that light with velocity c/n0 would take to cross
the slab. Then, following Büttiker’s analysis for electrons and by analogy with
(8.49), Gasparian et al. [14] defined the characteristic time

τ = τ1 − iτ2 ,

where
τ1 =

θ1

Ω
=

n0

ω

δψ

δn0

and
τ2 =

θ2

Ω
=

n0

2ω
δ ln T
δn0

.

These results and those obtained for a quantum particle are very similar:
the real component of this time, τ1, is analogous to the time associated with
the Larmor precession in the electronic case, and the imaginary part, τ2,
is analogous to the rotation time associated with Zeeman splitting in the
electronic case.

The Faraday clock presents some advantages with respect to the Larmor
one: advances on photonic tunneling (see Chap. 11) make experimental mea-
surements of the Faraday rotation and ellipticity much easier than the obser-
vation of the spin rotation, and the interactions between particles (photons)
are completely negligible. Also, Deutsch and Golub [16] argue that the times
provided by the Larmor clock are, at most, a definition and do not emerge as
naturally as the times related to the Faraday clock do.
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8.5.2 The Micromaser (Rabi) Clock

Let us suppose that we have a two-level atom and a radiation field and that
the effective coupling between the atomic degrees of freedom and those of the
radiation is only different from zero in a certain region, a cavity. When the
atom crosses the cavity, which can be tuned at the transition energy between
the two atomic levels of the atom, it will undergo Rabi oscillations and the
corresponding Bloch vector will suffer a rotation. The micromaser clock is
based on the relation between the above-mentioned rotation angle and the
interaction time [70].

In this clock a beam of two-level atoms coming from the left to a micro-
maser cavity is considered. The two levels are denoted by |+〉, |−〉. The cavity
is tuned to the transition energy �ω. If the other modes of the cavity can be
neglected, the micromaser wave function can be given in terms of the eigen-
states of the photon number operator |0〉, |1〉, · · · , |n〉, · · ·. The corresponding
Hamiltonian of the system is given by

Ĥ =
p̂2

2M
+ V (x) + �ω(â+â + π̂+π̂) + �ν(x)(â+π̂ + π̂+â) ,

under the dipole and rotating wave approximations [71]. The first two terms
correspond to the kinetic energy of the atom and some potential V (x), which
pertains to the center of mass motion of the atom. Next come the terms involv-
ing {π̂, π̂+} and {â, â+}, which are the photonic and atomic annihilation and
creation operators, whose action on states is defined by π̂+|n〉 =

√
n + 1|n+1〉

and â+|−〉 = |+〉. The coupling constant ν(x) depends on the spatial coordi-
nate x so that ν is only different from zero within the cavity. The last term
is responsible for the change in the internal degrees of freedom of the atoms
(two-level systems) accompanied by the emission or absorption of a single
photon. In this way Rabi oscillations between the excited and the ground
state of the atom take place, and from these the characteristic times of the
motion are extracted [70].

This procedure can be taken together with the phase time approach to
provide a way of measuring traversal times of a free cavity [72]. These traversal
times, however, can be negative, and they are measured by “following the
peak,” thus not being included in the context of quantum clocks as such.

Another alternative way of using Rabi oscillations as a quantum clock
is the setup discussed by Bužek et al. [73, 74], in which the motion of the
system is disregarded (Raman–Nath approximation). Consider first the very
simplified situation of one two-state atom or ion initially in state |ψ(0)〉 =
(|0〉 + |1〉)/

√
2, which evolves under the Hamiltonian Ĥ0 = �ω|1〉〈1|. After a

time t has elapsed, the state of the system is |ψ(t)〉 = (|0〉+exp(−iωt)|1〉)/
√

2,
and the probability of finding the system in the initial state at this moment
is P (t) = (1 + cos(ωt))/2. By repeating the experiment several times, if we
know for sure that the same interval of time has happened, we can measure
its length through the function P (t). This does not look like a very efficient
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way of measuring time, since we would need some way of making sure that
the same time interval has passed in all instances of the experiment, and this
is precisely what we would like to measure. However, this system is equivalent
to that presented in Sect. 8.3.2, under the restriction N = 2, as can be readily
seen. The relevant projectors are P̂0 = |ψ(0)〉〈ψ(0)| and P̂1 = |ψ(τ)〉〈ψ(τ)|,
where τ = 2π/Nω. In this manner, the system works as a clock as follows: let
the system begin in the state |ψ(0)〉, and after the time interval we wish to
measure has elapsed, we check whether the state is in the same state. If it is,
we estimate the time elapsed as 0 mod(2τ). If it is not in the state |ψ(0)〉, we
estimate the time elapsed as τ mod(2τ).

Is there any way of improving these estimates? Consider a set of n two-
state ions or atoms. Bužek et al. pose the following question: Is there an initial
state and a projector or positive operator valued measure that optimizes the
estimates of time? The underlying hypothesis is that on measuring that the
system is in the eigenspace of a given projector P̂r we would estimate the
elapsed time to be tr (modulus a period). The answer is, as was only to be
expected, affirmative. This affirmative result is an elaboration of the theorems
by Holevo ([75], Chap. 10) concerning optimality, extended to finite POVMs
[76], and applied to the present situation [73].

The Hamiltonian of the system is Ĥ = Ĥ0⊗1⊗1 · · ·⊗1+1⊗Ĥ0⊗1 · · ·⊗1 . . ..

There are
(

n
k

)
states with energy �kω, given by the presence of k atoms

in state |1〉 and n − k in the ground state |0〉. Define the states |k〉 as the

symmetric superposition of all
(

n
k

)
states with energy �kω. Let the reference

state |ψ0〉 be

|ψ0〉 =
1

n + 1

n∑

k=0

|k〉 ,

and define the states

|ψr〉 = ei2πrĤ/(n+1)�ω|ψ0〉 .

We thus have a set of orthogonal projectors Pr = |ψr〉〈ψr|. We prepare the
set of n atoms in an initial reference state ρ̂(0). After the time interval we
desire to measure has elapsed, we measure the projection of the evolved state
over the projectors. If we find that the system is in state P̂r, then we estimate
the elapsed time as tr = 2πr/((n + 1)ω) (modulo the period 2π/((n + 1)ω)).
The operator being measured is thus equivalent to the time operator (8.6),
i.e., equivalent to the phase operator of Pegg and Barnett [77].

The problem of optimality is reduced to the adequate determination of
the initial state ρ̂(0), which is dependent on the cost function used. The cost
function f gives the weight f(t−tr) assigned to the error we make if we assign
the estimate tr when the true elapsed (parametric) time is t. If this cost func-
tion is the delta function, then the best initial state is P̂0. However, if great
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disparities between the estimation and the actual time are more strongly pe-
nalized than small ones, then other initial states provide better clocks. Bužek
et al. [73] give as optimum state P̂opt = |ψopt〉〈ψopt|, in the case of large n,
where

|ψopt〉 =

√
2

n + 1

n∑

k=0

sin
(
π(k + 1/2)

n + 1

)
|k〉 .

A further development concerns successive measurements of time. Bužek
et al. [74] proved that for large atom ensembles the system is robust with
respect to subsequent measurements.

Quite a different use of this kind of system was put forward by Bollinger et
al. [78]: a number of entangled ions is used to improve the measurement of a
frequency, going beyond the shot noise limit. Huelga et al. [79] criticized this
proposal on physical grounds, asserting that taking into account decoherence
properly entails that the improvement in the measurement of frequency does
not take place for the maximally entangled state.

8.5.3 Irreversible Stopwatch Models

In the example of the Rabi clock and derived models, irreversibility appears
through the measurement process. This is in fact general in all quantum clocks,
starting from Salecker–Wigner’s on. There is however a different kind of irre-
versibility, which has to do with decoherence in the form of coherences being
lost because of large number of degrees of freedom. In the protracted history
of the study of measurement in relation to quantum mechanics, one approach
has been that of modeling detectors by means of quantum systems with such
a large number of degrees of freedom, so the models of the kind proposed for
determining time quantities follow naturally.

One such proposal was put forward by Schulman [80] in the context of
his “two time theory” (see his book [80] and his contribution to this volume
in Chap. 4). A further development, with the added advantage that the new
model was exactly solvable, was carried out by Halliwell [81]. This model is
explained in Halliwell’s contribution to this volume in Chap. 6.

In Halliwell’s model, the detector is a two-level system, which is coupled
to the particle whose arrival at point x = 0 we want to detect, and to a (fast)
environment, through a term of the form λθ(x̂)ĤdE , where x̂ is the position
operator of the system particle, and ĤdE is an interaction term between the
environment and the detector. This term, whenever activated, leads to a fast
decay of the latter from the excited state |1〉 to the ground state |0〉. If we
then start with the particle in x < 0 and the detector in its excited state, we
will know that the particle has crossed x = 0 if the detector is found in its
ground state. Notice that in this model the measuring of time is as follows: we
prepare the system, let go, and at some time t measure whether the detector
is or is not in the ground state. If it is, then we assert that the system particle
crossed x = 0 at some instant previous to t. Therefore, we do not directly
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obtain the density of arrivals, but a derived quantity: the probability that at
time t the detector remains in the excited state. The derivative of this quantity
with respect to time is minus the probability density that the system particle
crosses x = 0 at instant t.

A further point to remark concerning Halliwell’s model is that the mea-
surement of time itself is performed with an external clock, and the measure-
ment of a time quantity pertaining to the system is carried out through the
measurement of a time quantity pertaining to the detector. Another model,
somewhat more involved, which has this property as well, was proposed by
Muga et al. [82]. Even so, this model has the advantage that, treated with
quantum jump techniques, it provides us with a way of computing the statis-
tics concerning correlations between other time quantities, as we shall see.
The model consists of an atom or ion moving in one dimension, which finds
in its way either the vacuum electromagnetic state, or a laser tuned to a
particular transition of the atom or ion. In this case, and using the rotating
wave and dipole approximations [83], we can restrict ourselves to the internal
Hamiltonian as

Ĥinternal =
�ω

2
(|1〉〈1| − |0〉〈0|) ,

so that, by passing to the interaction picture, and neglecting recoil effects, the
master equation takes the form

dρ̂

dt
= − i

�

[
Ĥ, ρ̂

]
+

γ

2
(
2σ̂−ρ̂σ̂+ − σ̂+σ̂−ρ̂− ρ̂σ̂+σ̂−) ,

where

Ĥ =
p̂2

2m
+

�

2
Ω(x̂)

(
σ̂+ + σ̂−) ,

σ̂− = |0〉〈1| ,
σ̂+ = |1〉〈0| ,

Ω(x̂) = Ω0θ(x̂) .

Ω(x) is the position-dependent Rabi frequency, and γ the decaying constant
of the excited level |1〉 due to the coupling to the background vacuum state.

This master equation can be interpreted as follows: the atom moves in
one dimension, in the internal ground state |0〉, until it perceives the laser
field at x > 0. This laser field can take the atom to the excited state. The
speed with which this is performed is related to the intensity of the laser
and the coupling, in the combination given by Rabi’s frequency. The atom,
nonetheless, is still coupled to the background vacuum state, and thus can and
will decay, emitting photons that will be detected (in the process of deducing
the master equation one runs into subtleties regarding emitted versus detected
photons [84, 85, 86] that we will not be considering further).

In this model, then, the time at which the first photon is detected is a
good proxy for the time of first arrival of the atom to the region x > 0,
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i.e., a good measurement of that quantity. If only the instant of the first
photon detection is of importance, the solution of the master equation may
be simplified by considering the (two component) amplitude ψc conditioned
to no-photon detection. It satisfies an effective Schrödinger equation with
effective Hamiltonian

Ĥeff = Ĥ − i�
γ

2
|2〉〈2| . (8.50)

The distribution of times of detection of the first photons can be computed
exactly as −dN/dt, where N = 〈ψc|ψc〉 is the probability of not having a
detection up to time t.

Numerical comparison has shown [82] that there may be very good agree-
ment between Kijowski’s distribution and the distribution of first detected
photons. Perfect agreement cannot be obtained, however. An intuitive expla-
nation is that inevitably “charging” and “decaying” delays will be introduced:
the system needs some time in presence of the laser field to change into the
excited state, and some time to decay to the ground state. Additional to this
fact, it is clear that particles will be reflected by the laser field if it is too
intense, thus producing a depletion in the density of arrivals. Conditions have
been found that establish a regime where delay in detecting the atom and
reflection can be neglected [87]. In this respect, one should notice that the
idea that first comes to mind of tuning the decay by taking γ to infinity (or,
more realistically, choosing a system for which the decay is extremely fast) in
order to avoid delay in the detection of the atom is not adequate: the driving
of the system by the laser becomes so inefficient that actually no transition
ever takes place. If, on the other hand, a weak driving laser is chosen, there
is a big delay due to the “charging” of the system. In [87] the idea was put
forward that, at least in some regimes, one might be able to assume that the
observable we measure is the sum of two independent quantities: the arrival
time proper, and the time it takes for the atom to emit from the arrival time
on. Furthermore, it is likely that in some regimes the latter distribution be
the same that an atom would present when stationary in a laser field. Un-
der these joint assumptions, the probability density our gedanken experiment
would be measuring would be the convolution of the density for time of emis-
sion of the first photon by a stationary atom in a laser field and the (ideal)
probability density of time of arrivals. This last interesting quantity can then
be recovered by deconvolution with a known distribution, and is amenable
to analytical exploration. An exploration which leads to the interesting result
that in the limit of no reflection the ideal density is actually nothing but the
current! This obviously means that the joint hypotheses of independence, on
the one hand, and delay distribution being the one of the stationary case, on
the other, are actually not true, since the function one recovers need not be
positive semidefinite, and is therefore not a probability density.

One of the richness of this model is that the quantum jump technique
[84, 85, 86, 88, 89] allows us to consider other quantities, such as the time
a particle leaves the laser region, or dwell times, or other techniques for the
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same arrival time density. One such idea is to use a laser in a finite region
[90]: this is no different from a laser in an infinite region in those regimes in
which the penetration before activation and emission is much smaller than
the width of the region. Heuristically, this penetration length is given by

l = 5v
(

2
γ

+
γ

Ω2

)
.

For finite regions of laser presence such that the width is smaller than l, the
effectiveness of the measurement (as denoted by the fraction of atoms that
actually emit) is dependent on the speed of the atom v and the intensity of the
laser, in a fan-like structure, with some straight lines in the v−Ω space, with Ω
the Rabi frequency, leading to total efficiency. The idea of separating the time
of arrival of the first photon in two independent quantities, as before, requires
good control of the hypothesized distribution for first emission. In the regime
of small laser region, with size leading to resonant excitation of the atom,
one could assume that decay only takes place outside of this region, so the
distribution is that of first emission of photons by an excited stationary atom.
The current density is again recovered as the ideal distribution in a number
of regimes under those two hypotheses of sum of independent quantities and
delay being given by emission density for an excited stationary atom.

These ideas can be refined to search for optimized detection for a class of
kinematical states of the atom [91]. One surprising aspect is that the object
which is recovered as “ideal” after the deconvolution is the current density
and not Kijowski or some other probability density. However, using a different
technique Kijowski’s distribution is reobtained in some limit [92, 93]: this is
operator normalization [94]. The idea is to use a filtering after and before
the measurement device so as to enhance the signal obtained. The filtering is
adapted to the signal one wants to detect. It is difficult however to propose
simple models for the filtering procedure, although the mathematical idea is
fully developed.

As one can see, the simple model of a two-level atom impinging on a
laser-filled region, with the detection times of first photons being used as a
proxy for arrival of the atom to the region, has revealed quite a wealth of
phenomena. Furthermore, the one-dimensional analyses mentioned here have
also been expanded to three dimensions [95], and one could hope that they
might be of use for the experimentalist.

8.6 Simple “Time-dependent” Clocks: the Kick Clock

So far we have considered “time-independent clocks,” in the sense that their
Hamiltonians are time independent. Let us suppose now that the clock Hamil-
tonian Ĥs−c is activated periodically during intervals of time τ , but remains
zero otherwise. To achieve this behavior, we can imagine a periodic time signal
F (t) of period T with the following form:
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F (t) = 1 +
2T

τπ

∞∑

n=1

1
n

sin
(nπτ

T

)
cos
(

2πnt
T

)
. (8.51)

This corresponds to a periodic series of stepwise functions activated during
intervals of duration τ with intensity T/τ . Thus the time-dependent clock
Hamiltonian is given by

Ĥ = Ĥs + Ĥs−c(t) = Ĥs + F (t)Ĥs−c . (8.52)

To simplify the model we can further consider the limit τ → 0,

Ĥ = Ĥs + Ĥs−c(t) = Ĥs + TδT(t)Ĥs−c , (8.53)

with δT(t) =
∑∞

n=−∞ δ(nT − t). “Kicked” systems like these are useful in
different fields, e.g. in the study of chaotic behavior, because of their sim-
plicity [96, 97, 98, 99]. In particular, the unitary evolution operator for the
Hamiltonian (8.53) over a time T has the manageable form

ÛT = exp
(
− i

�
TĤs

)
exp

(
− i

�
TĤs−c

)
, (8.54)

which defines a quantum map,

|ψ
(
(n + 1)T

)
〉 = UT|ψ

(
nT
)
〉 . (8.55)

Thus the information of the evolution is obtained at integer multiples of T
as a sequence of applications of the evolution operator of the system over a
time T followed by an application of the evolution operator of the clock over
a time T. Clearly, if T → 0 the infinitesimal evolution operator UT→0 of the
kicked system coincides with the infinitesimal evolution operator of the time-
independent clock with Hamiltonian Ĥ = Ĥs + Ĥs−c up to O(T2[Ĥs, Ĥs−c]).
This is a direct consequence of the definition of F (t). We may expect a proper
functioning of the kicked clock when the period of the the signal F (t), T,
is a fraction of the dwell time of the particle in the interaction region. The
surprising fact is that very few kicks are enough to reproduce the non-kicked
clock behavior.

The most common quantum clocks found in the literature are the Salecker–
Wigner clock and the Larmor clock. The kicked versions of these clocks are
described next.

• Kicked Salecker–Wigner clock
Let us next consider a particle of mass m moving freely in one dimension
with Hamiltonian Ĥs = p̂2

x/2m. In a certain region of length d the particle
is coupled to the clock as follows [5, 12, 27, 28]:

Ĥ = p̂2
x/2m + χd(x̂)ωĴ = p̂2

x/2m− iω�χd(x̂)∂/∂θ, (8.56)
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where

χd(x) =
{

1, if x ∈ [0, d]
0, elsewhere

(8.57)

is the characteristic function indicating that the clock runs only when the
particle “is” within the interval [0, d].

Noting that Ĥ commutes with Ĵ , the time-dependent wave function
with initial state ψ(x)v(θ, t = 0) is given by

1
N1/2

∑

n

ψn(x, t)e−inωt/�un(θ), (8.58)

where ψn(x, t) is the (partial) wave that evolves from ψ(x) with the Hamil-
tonian

Ĥs + V̂n = p̂2
x/2m + n�ωχd(x̂), (8.59)

which represents a particle that collides with a rectangular barrier (well)
of height (depth) Vn = n�ω and width d. For an incident particle with
energy E = p2

x/2m and wave number k =
√

2mE/�, the wave number
inside the barrier is k′ =

√
2m(E − Vn)/� so that the phase shift caused

by the barrier is approximately given by

(k′ − k)d ∼ −nωtf , (8.60)

where tf = d/(2E/m)1/2 is the classical time of flight. The right-hand
side in (8.60) is a good approximation if E >> |Vn|, which means that the
disturbance caused by the measurement is negligible. If the incident wave
packet is very much peaked (in wave number) around

ψi(x, θ) = eikxv0(θ) = eikx
j∑

n=−j
un(θ)/

√
2j + 1, (8.61)

the outgoing one after the barrier for the particle plus the clock system
will be very much peaked around

ψf (x, θ) ∼ eikxv(θ − ωtf (k)), (8.62)

so that the hand points at the expected classical time of flight through the
region of interest. In the clock, |Vn| can be as large as j�ω ∼ π�/τ so that
the condition of negligible disturbance is given by [5, 22]

τ >>
π�

E
or E >>

π�

τ
. (8.63)

The same result may be obtained by imposing that the transmission prob-
ability should be close to one [13].

Equation (8.63) imposes a lower limit on the time resolution of the
clock. Equivalently, it imposes a lower bound on the incident energy of
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the particle such that a clock with resolution τ can be considered as a
small disturbance to the incident particle during the measuring process.
It is worth noticing that this limitation affects equally the measurement
of dwell times in the region of length d [5], or arrival times at x = d
[13], which are obtained, respectively, by locating the initial wave packet
outside or inside the selected interval [0, d].

Let us now work out a pulsed version of the particle–clock system to
avoid the excessive disturbance of the continuous clock. The simplest real-
ization of a pulsed interaction is a succession of instantaneous kicks sepa-
rated by a time T. (For examples of kicked systems see [96, 97, 98, 99]. An
experimental realization of a kicked rotor can be found in [100]. We refer
the interested reader to [96] for further details.) The Hamiltonian for the
kicked Peres–Salecker–Wigner clock is [101]

Ĥ(t) =
p̂2
x

2m
+ TδT(t)ωχd(x̂)Ĵ , (8.64)

where we have defined δT(t) =
∑∞

n=−∞ δ(nT− t), and the evolution oper-
ator of the kicked clock over each kick period is

ÛT = e−
i
�

Tp̂2x/2me−Tωχd(x)∂/∂θ = ÛT
s Û

T
c−s . (8.65)

If T → 0, the infinitesimal evolution operator, ÛT→0, of the kicked sys-
tem coincides with the infinitesimal evolution operator of the continuous-
coupling clock up to O(T2[Ĥs, Ĥc−s]), which goes to zero with T. The
difference between the pulsed and continuous-coupling clocks will there-
fore be seen for larger values of T. These larger values may also avoid
an excessive perturbation, but the time interval between kicks cannot be
arbitrarily large. If we want to extract a characteristic timescale of the
particle, T must be smaller than the timescale we want to measure.

We have discussed elsewhere [101] that the kicked clock can be succes-
fully used for energies that are smaller that π�/τ . The conditions are such
that

E >>
2π�

T
. (8.66)

However, for sufficiently small T the kick clock behavior resembles the
one of the continuous-coupling clock and (8.63) holds instead of (8.66).
Since we must also have tf > T, the proper working regime of the pulsed
apparatus is defined by the conditions

tf > T >
2j + 1

j
τ . (8.67)

We may in addition set 2π/ω as the maximum time to be measured by
the apparatus, to avoid the possibility of multiple times corresponding to
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a single θ. A measurement of θ at an asymptotically large time well after
the particle–clock interaction will not tell us the number of 2π cycles that
have occurred, so that the time read is only known modulo 2π/ω. This
ambiguity may be avoided by substituting the periodic hand motion by a
linear one as in [13].
From our previous considerations, it is clear that the energy of the particle
may violate the inequality in (8.63) and still lead to a succesfull time-of-
flight measurement for T > (2j + 1)τ/j, as we shall illustrate below with
numerical examples in which a minimun uncertainty product Gaussian
wave packet with negligible negative momenta is prepared at t = 0 outside
the region where the clock (continuous or kicked) is activated. Of course,
because of the momentum width we should not expect a single time but
a distribution. Well after the packet collision with the interaction region
the probability to find the value θ is calculated and the corresponding
(operational) time of flight distribution is obtained from the scaling t =
θ/ω.
Figure 8.3A shows the ideal distribution of flight times obtained for the
system in isolation, Pd, and the operational distributions obtained from
a kicked clock and from the continuous clock. (Incidentally, note that
the continuous-coupling clock distribution may also be obtained using D.
Sokolovski’s Feynman path-based theory [102]). The parameters are cho-
sen so that the classical time of flight for the average momentum of the
wave packet is 10 a.u., and in such a way that the inequality in (8.63)
is not obeyed, i.e., the continuous-coupling clock does not work correctly:
note the large early peak denoting an important reflection in its distri-
bution, and the displacement of the second peak with respect to Pd to
shorter times because of the filtering effect of the more energetic barri-
ers and wells that hinder the passage of slower components and allows a
dominant contribution of faster components [13].
The reference (ideal) curve Pd(t) is the distribution of the free particle
probability distribution of dwell times. For positive momentum states the
dwell time probability distribution is given by

Pd(t) =
∫ ∞

0

dp δ(t−md/p)P (p), (8.68)

where P (p) is the momentum distribution. Pd is both the dwell time distri-
bution for an ensemble of classical particles with momentum distribution
P (p), and the quantum dwell time distribution 〈δ(t− τ̂d)〉, where

τ̂d =
∫ ∞

−∞
dt eiĤst/�

(∫ d

0

|x〉dx〈x|
)

e−iĤst/� (8.69)

is the dwell-time operator [103].
Figures 8.3B and 8.3C show the cumulative distributions for several val-
ues of T and the cumulative distributions for Pd and for the continuous-
coupling clock. As T is increased there is a passage from the continuous-like
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Fig. 8.3. (A): In solid line a typical Pd(t) and a cumulative integration for T = 1.
In dashed line the ideal time distribution, (8.68), and in dotted–dashed line the
time distribution obtained from the continuous-coupling clock. (B,C): Cumulative
distributions for different values of T (dotted and dashed lines); cumulative distri-
bution for the continuous-coupling clock (solid line) and for the ideal dwell time
distribution (long dashed line). The simulations were performed for a particle of
mass m = 1 a.u. represented initially by a minimum-uncertainty-product wave
packet with width σ = 1 a.u., center at x0 = −30 a.u., and average momentum
p0 = 5.0 a.u. The collision region is the interval x ∈ (−25, 25) a.u. The method used
was a split operator method and we took 213 plane waves for the spatial coordinate
and 210 plane waves for the angular coordinate

regime to the truly kicked regime, where the cumulative distributions
reproduce in a step-like fashion the behavior of the reference ideal curve.
The perturbation of the kicks may be seen in the broader wings, which
grow with decreasing T.
In summary, it is possible to extend the energy domain where a clock
coupled to the particle’s motion provides its (free motion) time of flight
by using a pulsed particle–clock coupling rather than a continuous one.
Due to recent developments in ultrafast spectroscopy and pulsed lasers
this contibution may be relevant. Pulsed couplings are indeed possible
and there is a need to understand the consequences of such couplings in
the measurement of time quantities. In this respect our result is quite
promising.

• Kicked Larmor clock
As before we consider the motion of a quantum particle (an electron),
and again in certain region of space we confine a magnetic field in the
z-direction, in this case the Hamiltonian of the full system is given by
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Ĥ = Ĥs + Ĥs−c(t)

=
p̂2

2M
1̂ + 1̂V̂ (ŷ) + χd(ŷ)TδT(t)μB · σ , (8.70)

where 1̂ = diag(1, 1) and σ = (σ̂x, σ̂y, σ̂z). The Pauli matrices are given
by (8.14). We notice that in this case the system remains one dimensional,
while the Salecker–Wigner clock is two dimensional. From now on we shall
center our attention on the kicked Larmor clock.

To illustrate the functioning of a Larmor kick clock we have integrated
numerically (8.54) for a rectangular barrier V̂ (ŷ) = χd(ŷ)V0. As we can see
from (8.54) the integration involves two steps: first we have to propagate over
a time T the spinor Ψ under the operator exp (−iT( p̂

2

2M 1̂ + 1̂χd(ŷ)V0)/�), and
then we multiply the spinor by the operator exp (−iTμχd(ŷ)B · σ/�). To carry
out the first propagation we have used a split operator method (SOM) [104].
The initial state is an x-polarized spinor formed by two identical Gaussians
centered at x0 with momentum k and width σ,

Ψ(t = 0) = Ψ =
[
ψ0

ψ0

]
; ψ0(y) =

1√
2
eiky−

(y−y0)2

4σ2

(2πσ2)1/4
. (8.71)

The barrier parameter are V0 = 0.16 eV, and d = 80 Å , and the incident
energy is E0 = 0.159 eV. For the effective mass we chose 0.067me, with me

the mass of the electron. In the unit system we have used, space distances are
measured in nanometers, energy in electron-volts, time in femtoseconds, and
magnetic field in teslas.

During the time evolution, the electron state collides with the potential
and at certain times it is affected by the action of the external magnetic field
confined within the interaction region. The transmission part of the two spinor
components starts being zero and increases until it reaches its final stationary
value. An interesting feature is that the values of the transmission probability
in time remain the same for a large set of values of the period T of the external
signal F (t) (Fig. 8.4). In this sense, the number of kicks can be reduced with
no appreciable change to the transmission coefficient.

On looking at the behavior of the spin components with time, we see that
they also reach a stationary value when the transmission part of the wave is
out of the interaction region. Notice that the asymptotic value of the spin
components remains stable for a large interval of values for the period T. In
Table 8.1 we can see this phenomenon indeed taking place in the interval from
T = 5 fs to T = 40 fs. There again we conclude that a few kicks are enough
to extract the characteristic times related to those spin components being
examined.

In Table 8.2 we give some numerical data of the typical times obtained
from the kick clock. For the periods used these times are in good agreement
with those expected from a standard (nonkick) Larmor precession clock.
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Fig. 8.4. Different transmission probabilities for the spinor component ψ− as a
function of time for different values of T. In full line T = 5 fs, in dotted line T = 30
fs, in dashed line T = 40 fs and in long dashed line T = 80 fs. σ = 24Δy

Table 8.1. Different values of the spin components 〈sy〉 = �/2
∫
dy Ψ†σ̂yΨ and

〈sz〉 = �/2
∫
dy Ψ†σ̂zΨ for different periods, together with the characteristic times

derived from the spin components

T(fs) 〈sy〉 τy(fs) 〈sz〉 τz(fs)

5 −0.005827 13.486 0.001828 4.231
30 −0.005826 13.486 0.001830 4.236
40 −0.005813 13.456 0.001831 4.238
80 −0.006198 14.346 0.001776 4.110

8.7 Decoherence in Time

There is a further aspect of time in quantum mechanics that we have not
addressed so far. On first sight, one might think that the fact that all real
clocks must naturally be prone to errors and fluctuations need not be related
to quantum mechanics. However, these errors lead to decoherence, and can be
modeled, in the case of good clocks, by thermal baths with a special coupling to
the system [105]. In another section we shall also investigate other modelings
of clocks in terms of [106] or related to [82] thermal baths.
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Table 8.2. Typical characteristic times obtained for the kick clock, in this case
for σ = 27Δy. Let us notice that the initial wave packet is very well localized in
momentum space, so the times given are very close to the ones obtained by the
stationary-state analysis done by Büttiker [11]

T(fs) τy(fs) τz(fs)

1 10.301 12.319
2 11.193 12.498
3 11.193 12.497
4 11.191 12.497
5 11.189 12.496
6 11.188 12.495
7 11.187 12.494
8 11.187 12.493
9 11.186 12.492

The basic issue is that quantum and classical systems evolve in terms
of parametric time, whereas our measurements are always located in time
according to real clocks, which are of necessity faulty. This has led to an
ever more refined search for better clocks, up to the ultimate time standard
currently provided by atomic clocks [107]. Even so, the errors in measurement
of time add up as parametric time goes by, until a point is reached when the
typical error in time is comparable to the characteristic evolution timescale
for the system under study, thus eliminating any predictability beyond this
instant.

In the previous paragraph, four relevant timescales have appeared:

• Characteristic evolution timescale (ζ): This pertains to the system we de-
sire to investigate, and it is the longest timescale among those present
in the evolution of the system. For a quantum system, for instance, it
is the inverse of the smallest energy difference between stationary states,
multiplied by �.

• Initial error width: As soon as the clock starts going, it is going to acquire
an error, which will have a statistical width.

• (Relative) error correlation time (ϑ): It is clear that the absolute error
made in measuring time has a growing spread as parametric time goes by.
The rate of growth of this spread, roughly speaking, is related to (is the
inverse of) the correlation time for relative errors, as we shall see below.

• Period of applicability: This is a derived scale of time, which corresponds
to the instant when the absolute error width, due to the initial error width
and the rate of growth of this error, is comparable to the characteristic
evolution timescale.

From the presence of these four scales, it is clear that the question of what
is a good clock has a complete answer only in terms of “a good clock for a given
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system.” Thus, a clock will be good for the study of a given system if ζ � ϑ
and the period of applicability is much larger than ζ. Additional to this, some
intrinsic properties are needed for a clock to be good: first, causality must be
preserved, i.e., if two events take place in consecutive instants in parametric
time, they also must take place in consecutive instants in clock time; second,
on average the clock must be neither slow nor fast; third, it should always
behave (statistically) in the same way.

The absolute errors in the clock are the difference between the clock read-
out, t, and the parametric time when the clock readout is t, s(t), namely,
Δ(t) = s(t) − t (we should point out that there is an alternative description
which relies more on parametric time than on clock readout time; however, in
order to tie in with experimental procedure, our presentation is much more
accessible). The object we must consider is therefore a continuous stochastic
sequence Δ(t), and the clock is characterized by the corresponding probability
functional P [Δ(t)]. In fact, the continuous stochastic sequence of relative er-
rors, α(t), and the corresponding functional P [α(t)], are much more practical.
Consider for instance the condition that causality be respected by the clock’s
readout. This implies that if t2 > t1, then s(t2) > s(t1). For an infinitesimal
dt, therefore, s(t + dt) > s(t), from which it is clear that α(t) must be bigger
than −1, when we define Δ(t + dt) − Δ(t) = α(t)dt (the possible subtleties
associated with nondifferentiability of the corresponding stochastic processes
can be obviated by first studying a clock with discrete positions, asserting
that α is more useful than Δ in that context, and obtaining this bound that
is kept in the continuum limit).

For the clock to be neither slow nor fast (nor both slow and fast at different
instants), it is necessary that for each t the average value of α(t) be zero, i.e.,
〈α(t)〉 = 0, which translates into 〈Δ(t)〉 = 0. The requirement that the clock
behave in a statistically similar way at all instants is transposed into the
requirement of stationarity of the stochastic process of relative errors. The
reader should be aware that it is not possible for the stochastic process of
absolute errors to be stationary, since these must accumulate in some way, in
particular by increasing their statistical spread.

Consider now any given realization of the stochastic process, that is to say,
a specific function α(t). Using the chain rule, we can write the von Neumann
equation as

∂t�̂S(t + Δ(t)) = −(i/�)(1 + α(t))
[
Ĥ, �̂S(t + Δ(t))

]
. (8.72)

In this equation, �̂S(s) is the density matrix for the system at parametric time
s, in the Schrödinger picture. Since we are dealing with a particular realization,
at clock time t the corresponding parametric time is s(t) = t + Δ(t), and the
Schrödinger density matrix becomes a function of clock time t. The change of
this function ̂̃�S(t) = �̂S(s(t)) as clock time flows is then computed as above.

Define now �̂(t) as the average over the stochastic process α(t) of �̂S(t +
Δ(t)), that is, �̂(t) =

∫
DαP [α(t)]�̂S(t + Δ(t)). The density matrix that is
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actually measured using the clock defined by the stochastic process α(t) is
thus �̂(t). Adapting the standard procedures for treating quantum noise [108]
to the case at hand, one obtains the following master equation [105]:

˙̂�(t) = − i
�
[Ĥ, �̂(t)] − κ2

�2ϑ

[
Ĥ,
[
Ĥ, �̂(t)

]]
, (8.73)

where the small noise and Markovian approximations have been performed, ϑ
is the correlation time for the stochastic process α(t), ϑ =

∫ +∞
−∞ dτ〈α(t)α(t −

τ)〉/2〈α(t)2〉, and κ2 = ϑ2〈α(t)2〉 (since the stochastic process α(t) is station-
ary, 〈α(t)2〉 is actually time independent).

The physical meaning of (8.73) is clear: there is a process of decoherence,
whereby our knowledge of the system gradually decreases and becomes more
probabilistic. This increase in our ignorance about the system is a direct
consequence of our growing ignorance about parametric time. Moreover, the
physically preferred description of the system is in terms of the stationary
states, since the off-diagonal components in the basis of energy eigenstates
are the coherences that progressively vanish. More explicitly, any given pure
state |ψ〉 =

∑
j cj |Ej〉 evolves in time as

�̂(t) =
∑

j,k

cjc
∗
ke

−i(Ej−Ek)t/�−(Ej−Ek)2κ2t/(�2ϑ)|Ej〉〈Ek| →
∑

j

|cj |2|Ej〉〈Ej | ,

under the assumption that |Ej〉 are the nondegenerate eigenstates of the
Hamiltonian. The hypotheses underlying the derivation of (8.73) do not hold
for longer than the time of applicability; nonetheless, it is clear that the limit
written above is a stationary solution of (8.72) for any particular realization
of the clock noise α(t), and that for long times the spread of Δ(t) will be so
big that, effectively, we would be forced to consider only stationary states.

In fact, we can be more specific. The solution of (8.72) is clearly

�̂s(t + Δ(t)) = e−i
∫ t
0 ds(1+α(s))Ĥ/��̂S(0)ei

∫ t
0 ds(1+α(s))Ĥ/� ,

whence, again using the energy eigenstates, and assuming that �̂S(0) = �̂(0) =∑
j,k �̂jk|Ej〉〈Ek|, we obtain

�̂(t) =
∑

j,k

�̂jke−i(Ej−Ek)t/�

∫
DαP [α]e−i

∫
t
0 dsα(s)(Ej−Ek)/�|Ej〉〈Ek| .

The requirement of the clock being good entails that P [α] is a functional
very close to a well normalized, zero-mean Gaussian (even though, strictly
speaking, it cannot be a Gaussian, since the constraint α(t) > −1 would not be
fulfilled in such a case), for which the characteristic functional (the functional
Fourier transform) is again a zero-mean Gaussian. Thus, the restriction of the
characteristic functional to constant functions is a Gaussian function, namely
exp(−κ2(Ej − Ek)2t/�

2ϑ)! The departures from this form will be due to the
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non (strict) gaussianity of the probability functional, but, at any rate, they
will be functions of (Ej−Ek), and for large clock times (even past the time of
validity of the master equation), the limit state will indeed be

∑
j |cj |2|Ej〉〈Ej |

for the initial pure state |ψ〉 =
∑
j cj |Ej〉.

Put much more simply, our lack of certainty of the instant of time forces
our knowledge of the system to be restricted to stationary density matrices,
i.e., those that do not evolve in time.

There is an important alternative way of understanding (8.73), which was
proposed by Milburn [109], and later in a slightly different form by Bonifacio
[110, 111]: imagine that the evolution of the system takes place randomly.
That is, a system initially in a state |ψ〉 would remain in that state for an
stochastic interval δt, after which it would change to the state Û(δt), with
Û(t) = exp(−iĤt/�) the unitary evolution operator. Under a set of suitable
approximations, one is immediately led again to the master equation (8.73).
This approach was termed “intrinsic decoherence.” A unified description of
several presentations of dephasing as stochasticity in time has been presented
in [112].

Both formally and conceptually it is now not too difficult to establish the
equivalence of the process due to a faulty clock, with an evolution for which
the course of time flows smoothly according to parametric time, but with
the system coupled to a noisy bath, which forces our knowledge about the
system to be reduced. In fact, this bath can be assumed to be a thermal bath
of harmonic oscillators at temperature T , coupled to the system in a rather
unorthodox manner:

Ĥint = �Ĥsys

∫ ∞

0

dω
[
ξ(ω)a†(ω) + ξ∗(ω)a(ω)

]
,

where Ĥsys is the Hamiltonian of the system, a(ω) and a†(ω) are the annihi-
lation and creation operators, respectively, of the bath oscillator of frequency
ω, and ξ(ω) is a function such that

|ξ(ω)|2 =
1
π

tanh
(

�ω

2kBT

)∫ ∞

0

dτ 〈α(t)α(t − τ)〉 cos(ωτ) ,

kB being Boltzmann’s constant.
It is by now well established [113, 114, 115, 116] that the introduction of

a thermal bath of oscillators to account for the decohering fluctuations (in
our case, for 〈α(t)α(t − τ)〉), forces us to consider a further term, usually
denominated “dissipative.” This is the content of the fluctuation–dissipation
theorem, and is related to the structure of the thermal bath, not to the specific
coupling to the system nor to the system itself. However, the interpretation
of the additional term as dissipative does indeed depend on the system being
analyzed and the coupling between the system and the bath. In the particular
case at hand, no such interpretation is feasible. The “dissipative” term has
no influence on the classical equations of motion! That is to say, the extrema
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of the action of the system, when the effect of the bath is taken into account
through the influence functional formalism [113, 114, 115, 116], are determined
by the equations of motion of the system alone, plus a noise term associated
to the fluctuations, but the “dissipative” term plays no role. Thus we can
say that the fluctuation–dissipation theorem is indeed fulfilled, but that the
system does not acquire dissipation of energy into the bath.
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9.1 Introduction

The Larmor clock is one of the most widely discussed approaches to deter-
mine the timescales of tunneling processes. The essential idea [1, 2, 3] of the
Larmor clock is that the motion of the spin polarization in a narrow region
of magnetic field can be exploited to provide information on the time carriers
spend in this region. It is assumed that incident carriers are spin polarized
and that they impinge on a region to which a small magnetic field is applied
perpendicular to the spin polarization of the incident carriers (see Fig. 9.1).
The spin polarization of the transmitted and reflected carriers can then be
compared with the polarization of the incident carriers. Dividing the angle
between the polarization of the exiting carriers and that of the incident car-
rier by the Larmor frequency ωL gives a time. Originally, only spin precession
(the movement of the polarization in the plane perpendicular to the magnetic
field) was considered. However, [Büttiker] [3] pointed out, that especially if we
deal with regions in which only evanescent waves exist (tunneling problems)
the polarization executes not only a precession but also a rotation into the
direction of the magnetic field. In fact, in the presence of a tunneling barrier,
the spin rotation, is the dominant effect. Reference [3] considered a rectan-
gular barrier and considered a magnetic field of the same spatial extend as
the barrier. In the local version of the Larmor clock, introduced by Leavens
and Aers [4], we consider an arbitrary region in which the magnetic field is
nonvanishing and investigate again the direction of the spin polarization and
rotation of the transmitted and reflected carriers. The magnetic field might
be nonvanishing in a small region localized inside the barrier or in a small
region outside the barrier on the side on which carriers are incident or on
the far side of the barrier. We mention already here, that the response of the
carriers is highly nonlocal: even carriers which are reflected are affected by a
magnetic field that is nonvanishing only on the far side of the barrier where
naively we would expect only transmitted carriers [5]. In this work, we use
the local Larmor clock to derive a set of local density of states [6, 7, 8, 9, 10],
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Fig. 9.1. Spin polarized carriers incident on a barrier subject to a weak magnetic
field B0. The transmitted carriers exhibit both a spin precession and and a spin
rotation. After [3]

which we call partial densities of states, related to spin precession, and in
terms of sensitivities which are related to spin rotation . The partial densities
of states, below abbreviated as PDOS, are useful to understand a number of
transport problems: the transmission probability from a tunneling microscope
tip into a multiterminal mesoscopic conductor [10] can be expressed in terms
of PDOS, the absorption of carriers by an optical potential (a potential with
a small imaginary component), inelastic scattering and dephasing caused by a
weak coupling voltage probe, and the low-frequency transport in mesoscopic
conductors.

The partial densities of states are determined by functional derivatives of
the scattering matrix [6, 7, 9, 10]. Only in certain limited situations can the
density of states be expressed in terms of energy derivatives. Expressions for
the density of states in terms of energy derivatives of the scattering matrix
are familiar [11, 12]. In the discussion of characteristic times the distinction
between time-scales found from energy derivatives (like the Wigner–Smith
phase delay) and time scales found from derivatives with respect to the local
potential (the dwell time) has found some recognition. In contrast, densities
of states are almost invariably discussed in terms of energy derivatives. Here
we emphasize that a more precise discussion of density of states also uses
derivatives with respect to the (local) potential and not energy derivatives.
It is the dwell time (or sums of relevant dwell times) which is related to the
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density of states [13, 14]. The use of energy derivatives always signals that
approximations are involved.

The interpretation of the Larmor clock remains a subject of discussion.
Reference [3] considered the total rotation angle divided by the Larmor preces-
sion frequency to be the relevant time. This interpretation brings the Larmor
clock into agreement with the timescales obtained by considering tunneling
through a barrier with an oscillating potential [15]. Subsequent works have
argued that the precession angle and the rotation angle divided by the Larmor
precession frequency separately should be viewed as timescales [16, 17]. The
difficulty with such an interpretation is not only that one has two scales char-
acterizing the same process, but the times defined in such a way are also not
necessarily positive. Since we aim at characterizing a duration, that is a defi-
nite drawback. The two timescales can be combined into a complex time, with
the real part referring to the precession time and the imaginary part to the
time obtained from rotation. Like negative times, complex times are not part
of the commonly accepted notions of time. Steinberg argues (cf. Chap. 11)
that the clock presents only a “weak measurement” and that therefore com-
plex times are permitted [18]. In quantum mechanics the questions “how much
time has the transmitted particle spent in a given interval” is problematic since
being in an “interval” and “to be transmitted” correspond to noncommuting
operators [19]. Reasonably, we can only speak of a time duration if it is real
and positive.

A comparison of the Larmor clock with the closely related linear ac re-
sponse of an electrical conductor shows immediately the ambiguity of the
clock: in the ac response of a conductor which is predominantly capacitive
(tunneling limit) the voltage leads the current whereas for a highly transmis-
sive conductor the response is inductive and the current leads the voltage.

The language used here implies similarly an extension of the usual notion
of density of states. At the bottom of the hierarchy of density of states which
we discuss are the partial densities of states (PDOS) which represents the
contribution to the local density of states if we prescribe both the incident
and the outgoing channel. It turns out that certain partial densities of states
are not positive. (These are of course just the PDOS that correspond to neg-
ative precession times.) Thus the discussion presented below does not solve
the interpretational questions related to the Larmor clock. Nevertheless, as we
will show, even such negative PDOS are physically relevant. Using the partial
densities of states, either by summing over the outgoing channels (or by sum-
ming over the incident channels) we obtain the injectivity of a contact into a
point within the sample or the emissivity of a point within the sample into a
contact. Both injectivities and emissivities are positive and in the language of
tunneling times correspond to local dwell times for which either the incident
channel (or the outgoing channel but not both) are prescribed. Finally, if we
take the sum of all the injectivities or the sum of all the emissivities we obtain
the local density of states.
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9.2 The Scattering Matrix and the Local Larmor Clock

We start by considering a one-dimensional scattering problem [3, 4, 5]. We
consider particles moving along the y-axis in a potential V (y). The potential
is arbitrary, except that asymptotically, for large negative and large positive
values of y, it is assumed to be flat. We adopt here the language from meso-
scopic transport discussions and call the region of large negative y the contact
1 (the left contact) and the region of large positive y contact 2 (the right
contact). We assume that the quantum mechanical evolution is described by
the Schrödinger equation. A particle with energy E has for large negative y
a wave vector k1(E) and a velocity v1(E) and for large positive values of y a
wave vector k2(E) and a velocity v2(E). We are interested in scattering states.
A particle incident from the left is for large negative values of y described by
a scattering state

ψ1(E, y) = eik1y + S11 e−ik1y , (9.1)

and for large positive values of y is described by a transmitted wave

ψ1(E, y) =
(
v1

v2

)1/2

S21 eik2y . (9.2)

Similarly, a particle incident from the right is for large positive values of y
described by a scattering state

ψ2(E, y) = e−ik2y + S22 e−ik2y , (9.3)

and for large negative values of y is described by a transmitted wave

ψ2(E, y) =
(
v2

v1

)1/2

S12 eik2y . (9.4)

Here the amplitudes Sαβ determine the elements of the 2×2 scattering matrix
of the problem.1 Each scattering matrix element is a function of the energy E
of the incident carrier and is a functional of the potential V (y). To express this
dependence we write Sαβ(E, V (y)). Conservation of the probability current
requires that this matrix is unitary and in the absence of a magnetic field
time-reversal invariance implies that it is also symmetric.

Next we now consider a weak magnetic field applied to a small region.
The magnetic field shall point into the z-direction. For simplicity, we consider
the case where the magnetic field is constant in a small interval [y, y + dy]

1 N. of E.: There are two common but different conventions for the ordering of the
S-matrix elements. M. Büttiker follows the ordering which is usually found in
mesoscopic physics, whereas J.G. Muga in Chap. 2 follows the convention used
in a scattering theoretical context, see (2.45). The relation between the matrix
introduced here and the one defined in Chap. 2 is: S11 = S−+;S12 = S−−;S21 =
S++;S22 = S+−.
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and takes there the value B. We consider only the effect of the Zeeman en-
ergy. Thus the motion of the particle remains one dimensional and is as in
the absence of a magnetic field confined to the y-axis. In the setup for the
Larmor clock, we consider particles with a spin. The spin of the incident par-
ticles (in the asymptotic regions) is polarized along the x-axis. For spin 1/2
particles the wave functions are now spinors with two components ψ+(y,E)
and ψ−(y,E). Carriers incident from the left, have a spinor with components
given by ψ+(y,E) = ψ−(y,E) = (1/

√
2)exp(ik1y). The Zeeman energy which

is generated by the local magnetic field is diagonal in the spin up and spin
down components. Consequently, in the interval [y, y + dy] for a particle with
spin up, the energy is reduced by �ωL/2 with ωL/2 = gμB/� and for a particle
with spin down the potential is increased by �ωL/2. Thus with the magnetic
field switched on particles with spin up travel in a potential V (y) − dV (y)
and particles with spin down travel in potential V (y) + dV (y). Here V (y) is
the potential in the absence of the magnetic field and dV (y) is the potential
generated by the magnetic field. Thus dV (y) vanishes everywhere, except in
the interval [y, y + dy] where it takes the value dV (y) = �ωL/2 = gμB.

We can evaluate the polarization of the transmitted particles and the re-
flected particles if we can determine the scattering matrix for spin up and spin
down particles in the potential generated by the magnetic field. Thus we need
the scattering matrices S±

αβ(E, V (y)∓ dV (y)) where S+ is the scattering ma-
trix for spin up carriers and S− is the scattering matrix for spin down carriers.
Since the potential variation generated by the magnetic field is small we can
expand these matrices away from the scattering matrix for the unperturbed
potential. Thus we find to first order in the magnetic field for the scattering
matrices

S±
αβ(E, V (y))∓dV (y)) = Sαβ(E, V (y))

∓ [dSαβ(E, V (y))/dV (y)]dV (y)dy + ... (9.5)

The variation of the scattering matrix due to the magnetic field is proportional
to the derivative of the scattering matrix with respect to the local potential
at the location where the magnetic field is nonvanishing. More generally, we
can consider a magnetic field which varies along the y-axis (but always points
along the z-axis). This leads to a potential δV (y) determined by the local
magnetic field. The variation of the scattering matrix is then determined by
a functional derivative [δsαβ(E, V (y))/δV (y)] of the scattering matrix with
regard to the local potential,

S±
αβ(E, V (y)) ∓ δV (y)) = Sαβ(E, V (y))

∓
∫

dy′[δsαβ(E, V (y′))/δV (y′)]δV (y′) + ...... (9.6)

We emphasize that even though this equation looks quite simple, the evalua-
tion of a functional derivative of a scattering matrix, while not difficult for a
one-dimensional problem, can still be a laborious calculation.
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Let us now find the precession and rotation angles of the polarization of the
transmitted and reflected carriers. The normalized spinor of the transmitted
particles, which determines the spin orientation of the transmitted a particles
has the components

ψ1+(E, y) =
S+

21

(|S+
21|2 + |S−

21|2)1/2
, (9.7)

ψ1−(E, y) =
S−

21

(|S+
21|2 + |S−

21|2)1/2
. (9.8)

First consider the polarization in the y-direction. It is found by evaluating the
expectation value of the Pauli spin matrix σy,

〈sy〉21 =
�

2
〈ψ1|σy|ψ1〉 = −i

�

2
S+†

21 S−
21 − S+

21S
−†
21

(|S+
21|2 + |S−

21|2)
. (9.9)

Here the indices 21 indicate that we consider transmission from left (1) to
right (2) and evaluate the the spin in the transmitted beam. We need the spin
polarization only to first order in the applied magnetic field. Using (9.6) we
find

〈sy〉21 =
h

T ν(2, y, 1)ωLdy , (9.10)

where T = |S21|2 is the transmission probability in the absence of the mag-
netic field and

ν(2, y, 1) = − 1
4πi

(
S†

21

δS21

∂V (y)
− δS†

21

δV (y)
S21

)
(9.11)

is the partial density of states at y of carriers which emanate from contact 1
(the asymptotic region for large negative y) and eventually in the future reach
contact 2. Since initially the spin polarization was in the x-direction 〈sy〉21
directly determines the angle of precession of the carriers in the x−y plane.
Thus by dividing 〈sy〉21 by the Larmor precession frequency we can formally
introduce a quantity with the dimension of time, which we call τy(2, y, 1) and
which is given by τy(2, y, 1) = (h/T )ν(2, y, 1)dy. Here the index y indicates
that we deal with a time-scale obtained from the y-component of the spin
polarization. We can now proceed to evaluate also the y-component of the spin
polarization of the carriers which are reflected and can proceed to evaluate
the y-component of the spin polarization of the carriers that are in the past
incident from contact 2 (large positive y) and in the future will be transmitted
into contact 1 (large negative 1) or will be reflected back into contact 1. We
can summarize the results in the following manner: there are a total of four
spin polarizations to be considered, each of them determined by a partial
density of states
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ν(α, y, β) = − 1
4πi

(
S†
αβ

δSαβ
δV (y)

−
δS†

αβ

δV (y)
Sαβ

)
(9.12)

of carriers that are incident at contact β = 1, 2 and eventually in the future are
transmitted or reflected into contact α = 1, 2. Formally, the timescales related
to precession in the local magnetic field at y can be introduced which are re-
lated to the partial densities of states via, τy(α, y, β) = (h/|Sαβ|2)ν(α, y, β)dy
where |Sαβ |2 is the transmission probability T if α and β are not equal and
is the reflection probability R if α and β are equal. Thus with each element
of the scattering matrix we can associate a partial density of states. Later we
discuss the properties of the partial densities of states in more detail.

Next we consider the spin polarization in the z-direction. For the car-
riers incident in contact 1 and transmitted into contact 2 we find that the
z-component of the transmitted carriers is determined by

〈sz〉21 =
�

2
〈ψ1|σz |ψ1〉 =

�

2
|S+

21|2 − |S−
21|2

(|S+
21|2 + |S−

21|2)
. (9.13)

Using (9.6) we find

〈sz〉1 =
h

T η(2, y, 1)ωLdy , (9.14)

where we call

η(2, y, 1) = − 1
4π

(
S†

21

δS21

δU(y)
+

δS†
21

δU(y)
S21

)
(9.15)

the sensitivity of the scattering problem. Since the spin polarization of the in-
cident particles was originally along the x-direction only a small z-component
of the incident particle determines a spin rotation angle. We can formally in-
troduce a timescale τz(2, y, 1) associated with spin rotation which is given by
τz(2, y, 1) = (h/T )η(2, y, 1)dy. Again we can ask about the z-polarization of
reflected particles and can ask about the z-polarization of particles incident
from the right. The results are summarized by attributing each scattering
matrix element Sαβ a sensitivity

η(α, y, β) = − 1
4π

(
S†
αβ

δSαβ
δU(y)

+
δS†

αβ

δU(y)
Sαβ

)
, (9.16)

which determine the timescales τz(α, y, β) = (h/|Sαβ |2)η(α, y, β)dy. Finally,
we can determine the spin polarization in the x-direction. This component
is reduced from its initial value both because of spin precession in the x−y
plane and because of the rotation of spins into the z-direction. Since we have
at every space point

〈sx〉2 + 〈sy〉2 + 〈sz〉2 = �
2/4 , (9.17)
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it follows immediately that the time scale τx is related to the two timescales
introduced above by

τx = (τ2
y + τ2

z )1/2 . (9.18)

Using the expressions for τy and τz given above, we find for the timescales τx
the following expressions:

τx(α, y, β) =
h

|Sαβ |2

(
δSαβ
δV (y)

δS†
αβ

δV (y)

)1/2

. (9.19)

We reemphasize that neither the partial densities of states nor the sensitivities
are in general positive. In contrast, τx(α, y, β) is positive for all elements of
the scattering matrix.

9.3 Absorption and Emission of Particles: Injectivities
and Emissivities

Before discussing the partial densities of states in more detail it is of interest
to investigate the absorption of particles in a small scattering region [20]. We
assume that in a narrow interval [y, y+dy] there exists a nonvanishing absorp-
tion rate Γ . Thus the potential V (y) is equal to V0(y) − i�Γ in the interval
[y, y + dy] and is equal to V0(y) outside this interval. To solve the scattering
problem, we need to find the scattering matrix SΓαβ(E, V (y)) in the presence
of this complex potential V (y). Of interest here is, as in [20], the limit of small
absorption. The case of strong absorption is also of interest but thus far has
been used only to discuss global properties and not the local quantities of
interest here [21, 22]. For a small absorption rate, we can expand the scat-
tering matrix SΓαβ(E, V (y)) in powers of the absorption rate away from the
scattering problem in the original real potential V0. We obtain

SΓαβ(E, V (y)) = Sαβ(E, V0(y))
+ i�[δSαβ(E, V (y))/δV (y)]|V (y)=V0(y)Γdy + ..... (9.20)

We note that the adjoint scattering matrix has to be evaluated in the potential
V ∗(y) and hence

SΓ†
αβ(E, V (y)) = S†

αβ(E, V0(y))

− i�[δS†
αβ(E, V (y))/δV (y)]|V (y)=V0(y)Γdy + .... (9.21)

With these results it easy to show that the transmission and reflection prob-
abilities in the presence of a small absorption in the interval [y, y + dy] are

|SΓαβ(E, V (y))|2 = |Sαβ(E, V0(y))|2(1 − Γν(α, y, β)dy) , (9.22)
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where |Sαβ(E, V0(y))|2 is the transmission probability T of the scattering
problem without absorption if α and β are different and is the reflection
probability R of the scattering problem without absorption if α = β. The
incident current jin, must be equal to the sum of the transmitted current jT ,
the reflected current jR and the absorbed current jΓ ,

jin = jT + jR + jΓ . (9.23)

Using (9.20) and taking into account that the incident flux is normalized to
1, we find for carriers incident from the left or right β = 1, 2 an absorbed flux
given by

jΓ (y, β) = Γν(y, β)dy , (9.24)

where ν(y, β) is called the injectivity of contact β into point y. The injectivity
of the contact is related to the partial densities of states via

ν(y, β) =
∑

α

ν(α, y, β) . (9.25)

In our problem with two contacts the injectivity is just the sum of two partial
densities of states.

Another way of determining the absorbed flux proceeds as follows. The
absorbed flux is proportional to the integrated density of particles in the
region of absorption (in the interval [y, y + dy]). The density of particles can
be found from the scattering state ψβ(y) given by (9.1)–(9.4). For carriers
incident from contact β, the absorbed flux is thus

jΓ (y, β) = Γ
1

hvβ
|ψβ(y)|2dy . (9.26)

Note that here the density of states 1/hvβ of the asymptotic scattering region
appears. It normalizes the incident current to 1. Thus we have found a wave
function representation for the injectivity. Comparing (9.23) and (9.22) gives

ν(y, β) =
1

hvβ
|ψβ(y)|2 . (9.27)

The total local density of states ν(y) at point y is obtained by considering
carriers incident from both contacts. In terms of wave functions, ν(y) is for
our one-dimensional problem given by

ν(y) =
∑

β

1
hvβ

|ψβ(y)|2 . (9.28)

Thus the total density of states is also the sum of the injectivities from the
left and right contacts

ν(y) =
∑

β

ν(y, β) . (9.29)
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There is now an interesting additional problem to be addressed. Instead of
a potential which acts as a carrier sink (as an absorber) we can ask about
a potential which acts as a carrier source. Obviously, all we have to do to
turn our potential into a carrier source is to change the sign of the imaginary
part of the potential. With a a carrier source in the interval [y, y + dy] we
should observe a particle current toward contact 1 and a particle current
toward contact 2. We suppose that carriers are incident both from the left
and the right and evaluate the currents in the contact regions. The total
current injected into the sample at y is

jin(y) = Γν(y)dy . (9.30)

Taking into account that the incident current is normalized to 1 the current
jout(β, y) in contact β due to a carrier source at y is given by

jout(α, y) = 1 −
∑

β

|sΓαβ(E, V (y))|2 (9.31)

due to the modification of both the transmission and reflection coefficients.
Using (9.20) (with Γ replaced by −Γ ) gives

jout(α, y) = −Γ
∑

β

ν(α, y, β) dy = −Γν(α, y) dy . (9.32)

The current in contact α is determined by the emissivity ν(α, y) of the point y
into contact α. Note the reversal of the sequence of arguments in the emissivity
as compared to the injectivity. Thus the emissivity is like the injectivity a sum
of two partial densities of states,

ν(α, y) =
∑

β

ν(α, y, β) . (9.33)

For a scattering problem in the absence of a magnetic field, the injectivity
and emissivity are identical. If there is a homogeneous magnetic field present
they are related by reciprocity: the injectivity from contact α into point y is
equal to the emissivity of point y into the contact α in a magnetic field that
has been reversed, ν+B(y, α) = ν−B(α, y).

We have thus obtained a hierarchy of density of states: at the bottom are
the partial densities of states ν(α, y, β) for which we describe both the contact
from which the carriers are incident and the contact through which the carriers
have to exit. On the next higher level are the injectivities ν(y, α) and the
emissivities ν(α, y). For the injectivity, we prescribe the contact through which
the carrier enters but the final contact is not prescribed. In the emissivity, we
prescribe the contact through which the carrier leaves but the incident contact
is not prescribed. Finally, on the highest level is the local density of states ν(y)
for which we prescribe neither the incident contact nor the contact through
which carriers leaves.
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For simple scattering problems (delta functions, barriers) the interested
reader can find a derivation and discussion of partial densities of states in
[9, 10, 23].

Returning to timescales: we have shown that the partial densities of states
are associated with spin precession. It is tempting, therefore, to associate
them with a time duration. However, as can be shown, the partial densities
of states are not necessarily positive. (The simple example of a resonant dou-
ble barrier shows that one of the diagonal elements ν(α, y, α) has a range
of energies where it is negative [20]). The injectivities and emissivities are,
however, always positive. The proof is given by (9.25). We can associate a
local dwell time τD(y, β) = �νD(y, β) with the injectivity which gives the
time a carrier incident from contact β spends in the interval [y, y + dy] ir-
respective of whether it is finally reflected or transmitted. Similarly, we can
associate a dwell time with the emissivity which is the time carriers spend in
the interval [y, y + dy] irrespective from which contact they entered the scat-
tering region. There is little question that the dwell times have the properties
which we associate with the duration of a process: they are real and posi-
tive. However, as explained they do not characterize transmission or reflection
processes.

9.4 Potential Perturbations

Thus far our discussion has focused much on the partial densities of states.
The sensitivity introduced as a measure of the spin rotation in the Lar-
mor clock has, however, also an immediate direct interpretation. We have
seen that the partial densities of states are obtained in response to a com-
plex perturbation of the original potential V (y). The sensitivity comes into
play if we consider a real perturbation δV of the original potential. Thus
if we consider a potential which is equal to V (y) + δV in the interval
[y, y + dy] and equal to V (y) elsewhere the transmission probability T V

in the presence of the perturbation is T V = T + 4πη(α, y, β)δV dy, with
α �= β. The reflection probability is RV = R + 4πη(α, y, α)δV dy. Since
also T V + RV = 1 we must have η(y) ≡ η(α, y, β) = −η(α, y, α). For
our scattering problem, described by a 2 × 2 scattering matrix there ex-
ists only one independent sensitivity η(y). In the Larmor clock the sen-
sitivity corresponds to spin rotation and the fact that there is only one
sensitivity follows from the conservation of angular momentum: the weak
magnetic field cannot produce a net angular momentum. If carriers in the
transmitted beam acquire a polarization in the direction of the magnetic
field then carriers in the reflected beam must have a corresponding polar-
ization opposite to the direction of the magnetic field. In mesoscopic physics,
in electrical transport problems, the sensitivity plays a role in the discus-
sion of nonlinear current–voltage characteristics and plays a role if we ask
about the change of the conductance in response to the variation of a gate
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voltage [24]. Below, we will not further discuss the sensitivity, but we will
present a number of examples in which the partial densities of states play a
role.

9.5 Generalized Bardeen Formulae

It is well known that with a scanning tunneling microscope (STM) we can
measure the local density of states [25]. STM measurements are typically
performed in a two terminal geometry, in which the tip of the microscope
represents one contact and the sample provides another contact [25]. Here we
consider a different geometry. We are interested in the transmission probability
from an STM tip into the contact of a sample with two or more contacts as
shown in Fig. 9.2. Thus we deal with a multiterminal transmission problem
[10]. If we denote the contacts of the sample by a Greek letter α = 1, 2, .. and
use tip to label the contact of the STM tip, we are interested in the tunneling
probabilities Tαtip from the tip into contact α of the sample. In this case,
the STM tip acts as carrier source. Similarly we ask about the transmission
probability Ttipα from a sample contact to the tip. In this case, the STM
tip acts as a carrier sink. Earlier work has addressed this problem either
with the help of scattering matrices, electron wave dividers, or by applying
the Fermi Golden Rule. Recently, Gramespacher and the author [10] have
returned to this problem and have derived expressions for these transmission
probabilities from the scattering matrix of the full problem (sample plus tip).
For a tunneling contact with a density of states νtip which couples locally at
the point x with a coupling energy |t| these authors found

Ttipα = 4π2 νtip |t|2 ν(x, α) , (9.34)

Tαtip = 4π2 ν(α, x) |t|2 νtip . (9.35)

In a multiterminal sample the transmission probability from a contact α to
the STM tip is given by the injectivity of contact α into the point x and

x

tμ1

μ3

μ2

Tip

Fig. 9.2. Partial density of states measurement with a scanning tunneling micro-
scope (STM). The tip of an STM couples at a point x with a coupling strength t to
the surface of a multiterminal conductor. The contacts of the conductor are held at
potentials μα = eVα and the tip at potential μ3 = eVtip. After [10]
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the transmission probability from the tip to the contact α is given by the
emissivity of the point x into contact α. Equations (9.34) and (9.35) when
multiplied by the unit of conductance e2/h are generalized Bardeen conduc-
tances for tunneling into multiprobe conductors. Since the local density of
states of the tip is an even function of magnetic field and since the injectivity
and emissivity are related by reciprocity we also have the reciprocity relation
Ttipα(B) = Tαtip(−B).

The presence of the tip also affects transmission and reflection at the
massive contacts of the sample. To first order in the coupling energy |t|2
these probabilities are given by

|Stipαβ |
2 = |Sαβ |2 − 4π2 ν(α, x, β) |t|2 νtip . (9.36)

The correction to the transmission probabilities α �= β and reflection prob-
abilities α = β is determined by the partial densities of states, the coupling
energy and the density of states in the tip. Note that if these probabilities are
placed in a matrix then each row and each column of this matrix adds up to
the number of quantum channels in the contacts.

9.6 Voltage Probe and Inelastic Scattering

Consider a two-probe conductor much smaller than any inelastic or phase
breaking length. Carrier transport through such a structure can then be said to
be coherent and its conductance is at zero temperature given by G = (e2/h)T ,
where T is the probability for transmission from one contact to the other.
How is this result affected by events which break the phase or by events
which cause inelastic scattering ? To investigate this question, [26] proposes
to use an additional (third) contact to the sample. The third probe acts as
a voltage probe, which has its potential adjusted in such a way that there
is no net current flowing into this additional probe, I3 = 0. The current
at the third probe is set to zero by floating the voltage μ3 = eV3 at this
contact to a value for which I3 vanishes. The third probe acts, therefore, like
a voltage probe. Even though the total current at the voltage probe vanishes
individual carriers can enter this probe if they are at the same time replaced
by carriers emanating from the probe [26]. Entering and leaving a contact are
irreversible processes, since there is no definite phase relationship between a
carrier that enters the contact and a carrier that leaves a contact. In a three-
probe conductor, the relationship between currents and voltages is given by
Iα =

∑
β GαβVβ where the Gαβ are the conductance coefficients. Using the

condition I3 = 0 to find the potential V3 and eliminating this potential in the
equation for I2 or I1 gives for the two-probe conductance in the presence of
the voltage probe

G = −G21 −
G23 G31

G31 + G32
. (9.37)
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For a very weakly coupled voltage probe we can use (9.34)–(9.36). Taking into
account that Gαβ = −(e2/h)|Sαβ |2 for α �= β we find

G =
e2

h

(
T − 4π2 |t|2 [ν(2, x, 1) − ν(2, x) ν(x, 1)

ν(x)
]
)

. (9.38)

Here ν(x) is the local density of states at the location of the point at which the
voltage probe couples to the conductor. Equation (9.38) has a simple interpre-
tation [26]. The first term T is the transmission probability of the conductor
in the absence of the voltage probe. The first term inside the brackets pro-
portional to the local partial density of states gives the reduction of coherent
transmission due to the presence of the voltage probe. The second term in the
brackets is the incoherent contribution to transport due to inelastic scattering
induced by the voltage probe. It is proportional to the injectivity of contact
1 at point x. A fraction ν(2, x)/ν(x) of the carriers which reach this point,
proportional to its emissivity, are scattered forward and, therefore, contribute
to transport. Notice the different signs of these two contributions. The effect
of inelastic scattering (or dephasing) can either enhance transport or diminish
transport, depending on whether the reduction of coherent transmission (first
term) or the increase due to incoherent transmission (second term) dominates.

Instead of a voltage probe, we can also use an optical potential to simulate
inelastic scattering or dephasing. However, in order to preserve current, we
must use both an absorbing optical potential (to take carriers out) and an
emitting optical potential (to reinsert carriers). The absorbed and reemitted
current must again exactly balance each other. From (9.23) it is seen that
the coherent current is again diminished by Γν(2, x, 1), i.e., by the partial
density of states at point x. The total absorbed current is proportional to
Γν(x, 1), the injectance of contact 1 into this point. As shown in Sect. 9.3 a
carrier emitting optical potential at x generates a current −Γν(1, x) in contact
1 and generates a current −Γν(2, x) in contact 2. It produces thus a total
current −Γν(x). In order that the generated and the absorbed current are
equal we have to normalize the emitting optical potential such that it generates
a total current proportional to Γν(x, 1) (equal to the absorbed current). The
current at contact 2 generated by an optical potential normalized in such
a way is thus −Γν(2, x)ν(x, 1)/ν(x). The sum of the two contributions, the
absorbed current and the reemitted current gives an overall transmission (or
conductance) which is given by (9.38) with 4π|t|2 replaced by Γ .

Thus the weakly coupled voltage probe (which has current conservation
built in) and a discussion based on optical potentials coupled with a current
conserving reinsertion of carriers are equivalent [27]. There are discussions
in the literature which invoke optical potentials but do not reinsert carriers.
Obviously, such discussions violate current conservation. A recent discussion
[28], which compares the voltage probe model and the approach via optical
potentials, does reinsert carriers but does this in an ad hoc manner. In fact,
[28] claims that the Onsager symmetry relations are violated in the optical
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potential approach. This is an incorrect conclusion arising from the arbitrary
manner in which carriers are reinserted.

We conclude this section with a cautionary remark: we have found here
that the weakly coupled probe voltage probe model and the optical potential
model are equivalent. But this equivalence rests on a particular description
of the voltage probe. There are many different models and even in the weak
coupling limit our description of the voltage probe given here is not unique.
The claim can only be that for sufficiently weak optical absorption and rein-
sertion of carriers there exits one voltage probe model which gives the same
answer. Differing weak coupling voltage probes are discussed in [29].

9.7 AC Conductance of Mesoscopic Conductors

In this section we discuss as an additional application of partial densities
of states briefly the ac conductance of mesoscopic systems. We consider a
conductor with an arbitrary number of contacts labeled by a Greek index
α = 1, 2, 3.... The problem is to find the relationship between the currents
Iα(ω) at frequency ω measured at the contacts of the sample in response to a
sinusoidal voltage with amplitude Vβ(ω) applied to contact β. The relationship
between currents and voltages is given by a dynamical conductance matrix [7]
Gαβ(ω) such that Iα(ω) =

∑
β Gαβ(ω)Vβ(ω). All electric fields are localized

in space. The overall charge on the conductor is conserved. Consequently,
current is also conserved and the currents depend only on voltage differences.
Current conservation implies

∑
αGαβ = 0 for each β. In order that only

voltage differences matter, the dynamical conductance matrix has to obey∑
β Gαβ = 0 for each α. We are interested here in the low-frequency behavior

of the conductance and therefore we can expand the conductance in powers
of the frequency [6],

Gαβ(ω) = G0
αβ − iωEαβ + Kαβω

2 + O(ω3) . (9.39)

Here G0
αβ is the dc conductance matrix. Eαβ is called the emittance matrix

and governs the displacement currents. Kαβ gives the response to second order
in the frequency. All matrices G0

αβ , Eαβ and Kαβ are real.
We focus here on the emittance matrix Eαβ . The conservation of the total

charge can only be achieved by considering the long-range Coulomb interac-
tion. Here we describe the long-range Coulomb interaction in a random phase
approach (RPA) in terms of an effective interaction. The effective interaction
potential g(x′, x) has to be found by solving a Poisson equation with a non-
local screening term. The effective interaction gives the potential variation at
point x′ in response to a variation of the charge at point x. With the help of
the effective interaction we find for the emittance matrix [6]

Eαβ = e2

[∫
dxν(α, x, β) −

∫
dx′dxν(α, x′) g(x′, x) ν(x, β)

]
. (9.40)
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Here the first term, proportional to the integrated partial density of states,
is the ac response at low frequencies, which we would have in the absence
of interactions. The second term has the following simple interpretation: an
ac voltage applied to contact β would (in the absence of interactions) lead
to a charge built up at point x given by the injectivity of contact β. Due to
interaction, this charge generates at point x′ a variation in the local potential
which then induces a current in contact α proportional to the emissivity of
this point into contact α. The effective interaction has the property that at
an additional charge with a distribution proportional to the local density
of states gives rise to a spatially uniform potential,

∫
dx′ν(x′)g(x′, x) = 1

for every x. This property ensures that the elements of each row and each
column of the emittance matrix add up to zero. In particular, if screening is
local (over a length scale of a Thomas Fermi wavelength) we have g(x′, x) =
δ(x′ − x)ν−1(x). In this limit, the close connection between (9.40) and (9.35)
is then obvious.

9.8 Transition from Capacitive to Inductive Response

The following example [30] provides an instructive application of the ac
conductance formula (9.40). Consider the transmission through a narrow
opening shown in Fig. 9.3. Carrier motion is in two dimension through a
potential U(x, y) which has the form of a saddle with a height U0. The con-
ductance (transmission) through such a narrow opening (a quantum point
contact) has been widely studied and is found to rise steplike [31] as a func-
tion of the potential U0 with plateaus at values G = (2e2/h)N corresponding
to perfect transmission of N spin degenerate channels. Here we are interested
in the emittance E as a function of U0. We consider the case that U0 is so
large that transmission is completely blocked and then lower U0 such that the
probability of transmission probability T gradually increases from 0 to 1.

We introduce two regions Ω1 and Ω2 to the left and the right of the
barrier, respectively. Instead of the local partial density of states we consider
the partial density of states integrated over the respective volumes Ω1 and Ω2.
Thus we introduce Dαkβ =

∫
Ωk

dxdyν(α, x, y, β). We furthermore introduce
the total density of states D of the two regions. We assume that the potential
has left-right symmetry and consequently the density of states in the regions
Ω1 and Ω2 are D1 = D2 = D/2. Reference [30] evaluates the partial densities
of states semiclassically. We find that carriers incident from contact 1 and
transmitted into contact 2 give rise to a partial density of states in region 1
given by D211 = T D1/2. To determine D212, we note that in the semiclassical
limit considered here, there are no states in Ω1 associated with scattering from
contact 2 back to contact 2, hence it holds D212 = 0. With similar arguments
one finds for the semiclassical PDOS

Dαkβ = Dk (T /2 + δαβ(R δαk − T /2) ) , if α, β �= 3 . (9.41)
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Fig. 9.3. Charge dipole across a saddle point constriction. μ1 = eV1 and μ2 = eV2

are the potentials of the contacts, δU1 and δU2 are local potentials. The dashed lines
are the equipotential lines of the equilibrium potential. After [30]

From (9.41) we obtain for the emissivity into contact 1 from region 1 and
injectivity from contact 1 into region 1, De

11 = Di
11 = (1/4)(1 + R)D and

obtain for the emissivity into contact 1 from region 2 and the injectivity into
region 1 from contact 2, De

12 = Di
12 = (1/4)T D. Instead of the full Poisson

equation the effective interaction [30, 6, 32] is determined with the help of a
geometrical capacitance C. For a detailed discussion we refer the reader to
[30, 32]. Due to charge conservation we have E ≡ E11 = E22 = −E12 = −E21

with

E = (RCμ −DT 2/4) . (9.42)

Here C−1
μ = R−1(C−1+(e2D/4)−1) is the effective capacitance of the contact.

It is proportional to the reflection probability and proportional to the series
capacitance of the geometrical capacitance C and the “quantum capacitance”
e2D. If the contact is completely closed we have R = 1, T = 0 and the
emittance is completely determined by the capacitance Cμ. If the channel is
completely open we have R = 0, T = 1 and the emittance is E = −D/4. It
is negative indicating that for a completely open channel the ac response is
now not capacitive but inductive . Thus there is a voltage U0 for which the
emittance vanishes. For a simple saddle point potential, the behavior of the
capacitance and emittance is illustrated in Fig. 9.4. The dotted line shows
the conductance, the dashed line is the capacitance Cμ, and the full line is
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the emittance as a function of the saddle point potential U0. The emittance
is capacitive (positive) for a nearly closed contact and changes sign as the
transmission probability increases from near 0 to 1. The emittance shows
additional structure associated with the successive opening of further quantum
channels.

A similar transition from capacitive to inductive behavior is found in the
emittance of a mesoscopic wire: Guo and coworkers [33] investigate the emit-
tance of a wire as a function of impurity concentration. A ballistic wire with
no impurities has an inductive response, a disordered metallic diffusive wire
has a capacitive response. Experiments on ac transport in mesoscopic struc-
tures are challenging and we can mention here only the work by Pieper and
Price [34] on the ac conductance of an Aharonov–Bohm ring, work by Melcher
et al. [35] on the low-frequency impedance of quantized Hall conductors and
recent work by Regul et al. [36] on quantum point contacts.

Our simple example demonstrates the difficulty in associating a time with
a result obtained by analyzing a stationary (or as here) a quasistationary
scattering problem. The emittance divided by the conductance quantum e2/h
has the dimension of a time. (In the noninteracting limit e2/C << 4/D we
have [37] E/(e2/h) = (R − T )τD/4 where τD is the dwell time in the two
regions Ω1 and Ω2.) But since this “time” changes sign such an interpretation
is not appropriate. Furthermore, in electrical problems the natural “times”
are RC-times if the low-frequency dynamics is capacitive or an R/L-time if
it is inductive. The fact that we describe here a crossover from capacitive to
an inductive-like behavior demonstrates that neither of these two timescales
can adequately describe the dynamics.

9.9 Partial Density of States Matrix

Thus far the main aim of our discussion has been to illustrate the concept of
partial densities of states with a number of simple examples. We now would
like to point to some important extensions of this concept.

Quantum mechanics is a theory of probability amplitudes. We can thus
suppose that our initial state is a scattering experiment which is described
by a superposition Ψ(y) = aβΨβ(y) + aγΨγ(y). Here Ψβ and Ψγ are two scat-
tering states describing particles incident in channel β and in channel γ with
amplitudes aβ and aγ . Often such superpositions are eliminated since we can
assume that each incident amplitude carries its own phase φβ and φγ . We
suppose that aβ = |aβ |1/2 exp(iφβ) and aγ = |aγ |1/2 exp(iφγ) and that these
phases are random and uncorrelated. Thus, if an average over many scatter-
ing experiments is taken, we have 〈eiφβe−iφγ 〉 = δβγ and consequently we find
that 〈|Ψ(y)|2〉 = |aβ|2|Ψβ|2 + |aγ |2|Ψγ |2 is the sum of scattering events in the
different quantum channels. However, as soon as we are interested in quan-
tities which depend to fourth (or higher) order on the amplitudes, then even
after averaging over the random phases of the incident waves we find that
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Fig. 9.4. Conductance of the saddle point constriction (dotted line) in units of
2e2/h, capacitance and emittance (dashed and full curve) as a function of the height
of the saddle point potential U0. In the range of voltages shown, three quantum
channels are opened. After [30]

scattering processes which involve two (or more) incident waves matter. For
instance consider 〈|Ψ(y)|2|Ψ(y′)|2〉 − 〈|Ψ(y)|2〉〈|Ψ(y′)|2〉 which is determined
by |aβ |2|aγ |2Ψ∗

β(y)Ψγ(y)Ψβ(y′)Ψ∗
γ (y′) + h.c.. This expression describes a cor-

relation of the particle density at the points y and y′. Obviously, for such
higher-order correlations superpositions are very important even if we asso-
ciate a random phase with each incident scattering states and take an average
over these phases.

We can relate such density fluctuations to functional derivatives of scatter-
ing matrix expressions. To describe density fluctuations of scattering processes
with an incident carrier stream from channel β and γ, we consider

ν(α, y, β, γ) = − 1
4πi

(
S†
αβ

δSαγ
δV (y)

−
δS†

αβ

δV (y)
Sαγ

)
. (9.43)

Note that two different scattering matrices enter into this expression. The
connection to the scattering states is determined by the relation

∑

α

ν(α, y, β, γ) = (1/h)(vβvγ)−1/2Ψ∗
β(y)Ψγ(y) . (9.44)
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Here vβ and vγ are the (asymptotic) velocities of the carriers in the scattering
channels β and γ far away from the scattering region. Equation (9.44) was
given in [38] and a detailed derivation of this relation is presented in [39].

The expressions ν(α, y, β, γ) can be viewed as the off-diagonal elements of
a partial density of states matrix. In (9.44) we take the sum over outgoing
channels. The resulting matrix is the local density of states matrix. Using
(9.43) in (9.44) we find,

ν(y, β, γ) ≡
∑

α

ν(α, y, β, γ) = − 1
2πi

∑

α

(
S†
αβ

δSαγ
δV (y)

)
, (9.45)

where we have taken into account that the scattering matrix is unitary.
Let us now consider the total density of states matrix. The fluctuations

of interest are then the total particle number fluctuations in the scattering
region Ω, D(β, γ) =

∫
Ω dyν(y, β, γ). Furthermore, if the volume of integration

is sufficiently large, we can, in WKB (Wentzel-Kramers-Brillouin) approxima-
tion, replace the functional derivative with respect to V with a derivative with
respect to energy. The matrix which governs the fluctuations in the particle
number in the scattering region then becomes,

D(β, γ) =
1

2πi

∑

α

(
S†
αβ

dSαγ
dE

)
. (9.46)

Equation (9.46) is the Wigner–Smith delay time matrix (apart from a factor
h) [40]. We have earlier emphasized that the appearance of the energy deriva-
tive is a consequence of approximations (here the fact that we consider the
WKB limit). We also mention that strictly speaking, here we do not consider
a “delay.” We do not compare with a reference scattering problem (a free
motion) as is typically done in nuclear scattering problems. Equation (9.46)
determines a total time or absolute time and we should more appropriately
call it the absolute time matrix instead of the delay time matrix.

We conclude by briefly discussing the Wigner–Smith matrix for a tunnel
barrier. For a symmetric barrier with transmission and reflection probability
T and R the scattering matrix has elements S11 = S22 = −i

√
R exp(iφ), and

S21 = S12 =
√
T exp(iφ) where φ is the phase accumulated during a reflection

or transmission process. Thus the elements of the Wigner–Smith delay time
matrix (9.46) are

D11 = D22 =
1
2π

dφ

dE
, D12 = D21 =

1
4π

1√
RT

dT
dE

. (9.47)

To be specific consider now the case of a tunnel barrier. In the WKB limit we
have R ≈ 1 and T = exp(−2S/�) with S =

∫
dy

√
2m
√

V (y) − E where the
integral extends from one turning point to the other. We have dφ/dE = 0 and
using the expression τT = m

∫
dy(

√
2m
√

V (y) − E)−1 for the traversal time
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of tunneling gives dT /dE = (2τT /�)T . Consequently, the diagonal elements
of the Wigner–Smith matrix vanish and the nondiagonal elements are

D12 = D21 =
τT
2π�

√
T . (9.48)

Thus while the the average density inside the barrier vanishes (the trace of
the Wigner–Smith matrix is zero) the off-diagonal elements are nonzero and
indicate that the fluctuations of the charge will in general be nonvanishing
even deep inside the classically forbidden region.

We mention a number of transport problems in mesoscopic physics in
which the Wigner–Smith matrix, (9.46) (or more generally the partial density
of states matrix, (9.45)) plays a prominent role. Random matrix theory has
been extended to permit the calculation of the entire distribution function of
delay times [41] for structures whose dynamic is in the classical limit chaotic
(chaotic cavities). This work treats structures in which carrier propagation is
in an allowed energy region.

The partial density of states matrix has been used in [38] to obtain the
second order in frequency term of the ac conductance (see (9.39)). Reference
[42] investigated the current induced into a nearby gate due to charge fluc-
tuations in quantum point contacts and chaotic cavities. More recently, the
charge fluctuations in two nearby mesoscopic conductors were treated and the
effect of dephasing due to charge fluctuations was evaluated within this ap-
proach [43, 39]. The results can be compared with other theoretical works [44]
and with experiments [45]. The quantum measurement problem, a two-state
system coupled to a mesoscopic conductor described by a general scattering
matrix is treated by Pilgram and Büttiker [46] who derive a general expres-
sion for the Heisenberg efficiency of the detector in terms of the Wigner–Smith
matrix. The role of screening (interactions) is discussed in [47]. Clerk, Girvin,
and Stone [48] discuss the information theoretical aspects of this problem and
Clerk and Stone [49] investigate the effect of phase breaking and inelastic
scattering on the efficiency of the detector.

Of considerable interest is a theory of quantum pumping in small systems.
In quantum pumping one is interested in the current generated as two param-
eters (gate voltages, magnetic fluxes) which modulate the system are varied
sinusoidally but out of phase. Brouwer [50], Avron et al. [51], Shutenko et al.
[52], and Polianski and Brouwer [53] develop a theory which is based on the
modulation of the partial densities of states discussed here. Expressions for
the pump current, the heat flow, and the noise in terms of the diagonal and
off-diagonal elements of the partial density of states matrix, (9.45) of an adi-
abatic quantum pump are given by Moskalets and Büttiker [54]. Particularly
revealing is the investigation of a quantum pump in the presence of oscillating
contact potentials. In this case the ac currents generated in the contacts of
the sample interfere with the quantum pump [55]. Again the partial density
of states play a prominent role.
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9.10 Local Friedel Sum Rule

We have discussed the connection of partial density of states with the Wigner–
Smith delay matrix, or more precisely, its local version. In solid state physics
the connection between scattering data and the (charge)-density is known as
Friedel sum rule [56]. We can now similarly derive a connection between partial
densities and the local density matrix [38, 9, 57, 58]. Namely, if we combine
(9.44) and (9.45) and integrate over an (arbitrary) volume Ω of interest we
have

1
h(vβvγ)1/2

∫

Ω

d3rΨ∗
β(r)Ψγ(r) = − 1

2πi

∑

α

∫

Ω

d3r
(
S†
αβ

δSαγ
δV (r)

)
. (9.49)

For γ = β the left-hand side is just the contribution of the scattering state with
carriers incident from contact β to local density in Ω. Equation (9.49) shows
that similar relations apply even for products of two different wave functions,
i.e., to the off-diagonal matrix elements of the charge density operator. A
simplification occurs if we take the volume Ω to be large. In fact if Ω is large
it will intersect our sample far in the asymptotic regions. Suppose then that
we define the scattering matrix such that it describes exactly the phases and
amplitudes for scattering from one of these intersections to another. We can
then replace the functional derivative with respect to the local potential on
the right-hand side with an energy derivative to obtain [9, 58],

1
h(vβvγ)1/2

∫

Ω

d3rΨ∗
β (r)Ψγ(r) = s†ds/dE + (s− s†)/4E. (9.50)

The first term on the right-hand side is just the Wigner–Smith matrix, (9.46).
The second term represents an interference term which arises since we ask
about the density in a finite, well-defined volume. Such interference terms
were discussed for a reflection problem by Leavens and Aers [5], by Gasparian
et al. [9], and more recently for scattering problems on networks by Texier
and the author [58]. We remark that here it is the absolute densities and
phases which are important, in contrast, to the typical discussion in scattering
theory in which differences of densities and phases of a problem with and
without scattering are evaluated. The integrated version of the Friedel sum
rule, (9.50) is especially useful since it relates integrated densities directly to
energy derivatives of the scattering matrix. On the other hand, many problems
require knowledge of local densities and it is then necessary to calculate either
wave functions or functional derivatives of the scattering matrix making use of
(9.49). The scattering matrix contains knowledge only of states which connect
to the contacts of the sample (asymptotic scattering regions). We cannot
extract information from the scattering matrix on states which are entirely
localized within the sample. Therefore, there are limits on the validity of (9.49)
and (9.50). We refer the interested reader to [58].
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9.11 Discussion

The Larmor clock and its close relatives have become one of the most widely
investigated approaches mainly in order to understand the question: “How
long does a particle traveling through a classically forbidden region (a tunnel
barrier) interact with this region?”. We have already in the previous sections
pointed out that there is no consensus in the interpretation even of this simple
clock. Regardless of these difficulties the investigation of the Larmor clock has
been helpful in understanding a number of transport problems: In particular,
we have discussed a hierarchy of density of states as they occur in open mul-
tiprobe mesoscopic conductors. These density of states are directly related
to local Larmor times. We have shown that a small absorption or a small
emission of particles can be described with these densities (or in terms of the
Larmor times). We have shown that the transmission probabilities through
weakly coupled contacts like the STM is related to these densities. We have
shown that a weakly coupled voltage probe, describing inelastic scattering or
a dephasing process can be treated in terms of these densities. We have also
pointed out that the ac conductance of a mesoscopic conductor at small fre-
quencies can be expressed with the help of these densities. Furthermore, we
have indicated that it is useful to consider also the off-diagonal elements of a
partial density of states matrix since this permits a description of fluctuation
processes. Thus there is no question that the investigation of the Larmor clock
has been a very fruitful and important enterprise.
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26. M. Büttiker: IBM J. Res. Develop. 32, 63 (1988) 291, 292
27. P.W. Brouwer, C.W.J. Beenakker: Phys. Rev. B 55, 4695 (1997) 292
28. T.P. Pareek, S.K. Joshi, A.M. Jayannavar: Phys. Rev. B 57, 8809 (1998) 292
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43. M. Büttiker, A.M. Martin: Phys. Rev. B 61, 2737 (2000) 299
44. Y.B. Levinson: Europhys. Lett. 39, 299 (1997); L. Stodolsky, Phys. Lett. B

459, 193 (1999) 299



9 Larmor Clock, Density of States 303

45. E. Buks, R. Schuster, M. Heiblum, D. Mahalu, V. Umansky: Nature 391, 871
(1998); D. Sprinzak, E. Buks, M. Heiblum, H. Shtrikman: Phys. Rev. Lett. 84,
5820 (2000) 299
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55. M. Moskalets, M. Büttiker: Phys. Rev. B 69, 205316 (2004) 299
56. J. Friedel: Philos. Mag. 43, 153 (1952) 299
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Iñigo L. Egusquiza1, J. Gonzalo Muga2, and Andrés D. Baute1,2

1 Fisika Teorikoaren Saila, Euskal Herriko Unibertsitatea, 644 Posta Kutxa, 48080
Bilbao, Spain
inigo.egusquiza@ehu.es
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10.1 Introduction

As we already pointed out in the introduction, the understanding of time ob-
servables in quantum mechanics has been hindered by the early appreciation
that there could be no such “observable” in the standard, von Neumann for-
malism. A statement of such a view is that provided by Pauli [1], whereby a
self-adjoint positive operator cannot have a self-adjoint conjugate operator.

This did not prevent some adventurous souls from trying to propose op-
erators with the required characteristics of time. Among these, a very spe-
cial mention of Aharonov and Bohm is required [2]. They considered the
symmetric quantization of the phase space function which, in the free par-
ticle case, provides us with the time of arrival at a point y of a parti-
cle that at the instant t = 0 has position x and momentum p, namely,
m(y− x)/p. Their main concern was to estimate uncertainties and to investi-
gate the status and meaning of time–energy uncertainty relations. Later on,
several groups of researchers looked harder at the mathematical fine details
of the operator [3, 4, 5, 6, 7, 8, 9]. As a result, the status of the Aharonov–
Bohm time-of-arrival operator as a maximally symmetric operator, with an
associated positive operator valued measure (POVM), has now been firmly
established.

On a different tack, Kijowski [10] introduced a probability density for times
of arrival of free particles from an axiomatic perspective. He thus concluded
that he had obtained a time-of-arrival operator, and gave an explicit expres-
sion in the energy representation, pointing out that the correct commutation
relation is indeed fulfilled. He also signaled the fact that no self-adjoint ex-
tension could exist (see also [11]), and pursued other possible routes (later
retaken in [7]). He also studied the relativistic case.

I. L. Egusquiza et al.: “Standard” Quantum–Mechanical Approach to Times of Arrival,
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After introducing Kijowski’s distribution for the free particle, we shall
present a short introduction to the concept and mathematics of POVMs,
including the case of continuous POVMs, which will be illustrated with the
example of the momentum on the half-line. Without delving too deeply in
the mathematics of Naimark’s dilation theorem, we shall use it in the same
physical context. Armed with all these concepts and examples, we shall then
show that the Aharonov–Bohm time-of-arrival operator is a maximally sym-
metric operator to which those constructions are applicable. In order to show
the generality of the concept of POVM for understanding time, we shall also
discuss several other examples of time operators.

Once the time-of-arrival POVM for the free case has been well established,
we will proceed to identify the associated probability distribution with that
postulated by Kijowski on axiomatic grounds [10]. In this manner, Kijowski’s
operator is identified with Aharonov and Bohm’s for the free particle case. An
alternative construction using arrival states will be introduced that generalizes
the time-of-arrival distributions for the interacting case. We shall see that in
general it is not possible to associate POVMs to these distributions. However,
the “operator normalization” of Brunetti and Fredenhagen [12] will allow
us to recover a setting for them within standard quantum mechanics. We
shall see also that this concept combined with a model for time-of-arrival
detection using fluorescence photons provides an operational procedure to
measure Kijowski’s distribution.

The purpose of this chapter is to include at least some embodiment of
time observables, in particular time-of-arrival observables, within a very slight
mathematical extension of “standard” quantum mechanics, understood as de-
fined by von Neumann [13] and others. We shall limit ourselves to this partic-
ular approach to times of arrival, and we direct the reader to a review of time
of arrival in quantum mechanics with a wider scope than this work [14].1

10.2 Kijowski’s Time-of-Arrival Distribution

Kijowski [10], in an attempt to formulate a realistic interpretation of the
time–energy relation, proposed a probability density for times of arrival of a
free particle, that we shall henceforth be calling Kijowski’s distribution. His
approach consisted in identifying some minimum properties that the distri-
bution of times of arrival fulfills in the classical free case, and then demand
them of a quantum–mechanical probability density, again for the free parti-
cle. In a more detailed manner, Kijowski proved the following theorem (in a
three-dimensional version that we will obviate): consider the set of continuous
positive bilinear functionals F of wave functions ψ with support restricted
to positive momentum, bilinears which are invariant under space translations,

1 For other recent, complementary views and discussions on the quantum arrival
time see [15, 16] and further references below.
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such that for any normalized wave function ψ it is the case that
∫
dt F [ψt] = 1,

where ψt is the evolved state from the initial state ψ0 = ψ. Additionally de-
mand that F [ψ̄] = F [ψ] and that the dispersion, defined as

∫ +∞

−∞
dt t2F [ψt] −

(∫ +∞

−∞
dt tF [ψt]

)2

be finite. Then there is a specific functional F0 for which this variance is min-
imum; the average value

∫
dt tF [ψt] is constant over this class of functionals;

and the functional F0 has the following expression:

F0[ψ] =
∫
dp1dp2

2πm�
ψ̄(p1)

√
p1p2ψ(p2)

(notice a slight deviation from the notation of Kijowski; we denote by ψ(p)
the wave function in the momentum representation, normalized to unity). The
integration variables run from 0 to infinity, since this functional is defined
only on functions with support on positive momenta. The probability density
of arrivals for these states, with support on positive momenta only, is thus
defined as

ΠK
+ (t) = ΠK

+ (t, ψ) = F0[ψt] =
∣∣∣∣
∫ ∞

0

dp

√
p

2πm�
e−ip

2t/2m�ψ(p)
∣∣∣∣
2

.

The average of t withΠK
+ ,

∫
dt tΠK

+ (t), coincides with the “average” computed
with the current density J(t), even though J(t) is not necessarily positive.2

Notice also that we are dealing with the case of free motion, which means that
the p component of the evolved state ψt is related to the p component of the
initial (t = 0) state ψ through

ψt(p) = e−ip
2t/2m�ψ(p) .

Kijowski pointed out that ΠK
+ (t) regards only arrivals from the left, but

that arrivals from the right lead by symmetry to an analogous expression,
ΠK

− (t). In this way, he obtained a total probability density for arrivals at time
t at position x = 0 of a freely moving particle in one dimension, as follows:

ΠK
ψ (t)=

∣∣∣∣
∫ ∞

0

dp

√
p

2πm�
e−ip

2t/2m�ψ(p)
∣∣∣∣
2

+

∣∣∣∣∣

∫ 0

−∞
dp

√
−p

2πm�
e−ip

2t/2m�ψ(p)

∣∣∣∣∣

2

.

Since a (good) bilinear functional has been defined over the space of states
of the free particle, Kijowski concludes that an operator has been obtained
that fulfills the characteristics we desire of a time-of-arrival operator. However,
this operator cannot have any self-adjoint extension, as he proves by going
to the energy representation, which we will be reexamining later. How does
this fact tally with the existence of a perfectly well-defined procedure for
assigning probability densities of times of arrivals to each state? Is this not
an observable? The answer to these questions lies in the concept of POVM.
2 This property is used in Chap. 2.
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10.3 POVMs

When first presenting quantum mechanics to undergraduates, it is rather usual
to state that the correspondence between observables and self-adjoint opera-
tors is due to the fact that in experiments we measure real numbers. When
the level of mathematical sophistication increases, the association between
observability and self-adjointness is referred to the probabilistic definition of
quantum mechanics (see [17] for an enlightening axiomatic presentation of
quantum mechanics as a probabilistic theory—for a Bayesian perspective see,
for instance, [18]). In actual fact, however, the real reason underlying the usual
presentation is the spectral theorem that, in broad terms, states that the mo-
ments of the probability distribution for the measurement of an observable do
coincide with the operator moments, if the associated operator is self-adjoint.

What is indeed demanded by the probabilistic character of quantum me-
chanics? The probability pσ for the outcome of an experiment to lie in a subset
σ of the range of possible values for an observable is linear with respect to the
density matrix ρ̂, which implies that for each subset σ there exists an operator
Âσ in such a way that the probability is given by

pσ = Tr(Âσ ρ̂) . (10.1)

Now, for disjoint subsets of possible values of the observable, the probabilities
must be additive for all states, whence it follows that Âσ∪σ′ = Âσ + Âσ′ (if
σ∩σ′ = ∅). Even more, the additivity of the operators must be inherited from
that of the subsets of possible values, so, for instance, Âσ∪σ′ = Âσ if σ′ ⊂ σ.
Next, since probabilities sum to one for every state ρ̂, i.e.,

1 =
∑

σ

pσ = Tr

(
∑

σ

Âσ ρ̂

)

for all ρ̂, it must be that ∑

σ

Âσ = 1̂ .

Furthermore, since probabilities are positive, Âσ must be a positive operator
for every σ which is a subset of the set of possible values of the observable.

It thus follows that an observable is characterized by its range of possible
values and by a map from subsets of the set of possible values to the space of
positive operators, in such a way that the additivity of the sets is respected
by the operators and the positive operator associated with the whole set of
possible values is the unit operator.3

3 It is possible to extend even further this general result by considering the possi-
bility that none of the possible values is measured, because of the unavailability
of the system or for dynamical reasons. Such an extension is indeed considered by
Hardy [17] and others [19], and, implicitly and in a different context, particularly
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This result is encoded in the sentence “each observable is associated to a
positive operator valued measure (POVM),” which is precisely that mapping
from intervals of the real line (or a more general Borel space, if an abstract
treatment is necessary) to positive operators that has been presented above.

As a simple example of a POVM, let us consider the following set of two
by two matrices:

M̂1 =
1
2

(
1 0
0 0

)
, M̂2 =

1
2

(
0 0
0 1

)
, M̂3 =

1
4

(
1 1
1 1

)
, M̂4 =

1
4

(
1 −1
−1 1

)
.

(10.2)
They are positive (since all four matrices are in fact a positive constant times
a projector), and they add up to the unit matrix. In this case, the probability
pi of obtaining the outcome ai associated with the i-th operator is Tr(M̂iρ̂)
for the two by two density matrix ρ̂.

There is an operator associated with this example, namely Â =
∑4
i=1 aiM̂i.

Under the assumption that the possible outcomes are real numbers, it is indeed
a self-adjoint operator. Wherein lies the difference with the older standard
approach? The average value of the observable is of course

4∑

i=1

piai =
4∑

i=1

aiTr(M̂iρ̂) = Tr

((
4∑

i=1

aiM̂i

)
ρ̂

)
= Tr

(
Âρ̂

)
.

However, the second moment is

4∑

i=1

pia
2
i = Tr

((
4∑

i=1

a2
i M̂i

)
ρ̂

)
,

which is most definitely not equal to Tr
(
Â2ρ̂

)
for all ρ̂. This is due to the

fact that the positive operators above are not orthonormal projectors.
The common objection against understanding each of the four matrices

as associated to distinct possible outcomes of the observable is that the lack
of orthogonality would not allow such a discrimination between the different
outcomes. This objection can however be surmounted by introducing either an
ancillary system or an extended set of states for the measuring apparatus. Let
us now consider the second possibility. Imagine that we have a quantum mea-
suring apparatus and a two-level system coupled to this apparatus. Consider
further that the measuring apparatus has four possible distinct orthogonal
pointer states, and, associated with these, four projectors Êi. Denote with Û
the unitary evolution of both system and measuring apparatus, and assume
that the initial state is ρ̂s ⊗ ρ̂a, that is to say, the product state of the ap-
paratus state ρ̂a and the system state ρ̂s. The probability that the apparatus
provides us with the i-th outcome is

relevant for the topic of times of arrival, by [20]. Note that in this presentation,
we have implicitly assumed the conditions required for Gleason’s theorem and its
extensions for POVMs, such as that of Busch [19].
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pi = Trs,a
(
Û ρ̂s ⊗ ρ̂aÛ

†
(
1 ⊗ Êi

))
=

= Trs
(
ρ̂s

(
Tra

(
ρ̂aÛ

†ÊiÛ
)))

= Trs
(
ρ̂sM̂i

)
,

where
M̂i = Tra

(
ρ̂aÛ

†ÊiÛ
)
.

Given this example, one could argue that POVMs are simply the conse-
quence of having traced over some additional ancillary system, or that they
appear because we are interposing some quantum measurement between the
system and the observer. This is not the correct place to address the quan-
tum theory of measurement. Let us simply note that indeed POVMs can be
understood as associated to “unsharp” measurements [21] or “nonideal” mea-
surements [22], and this has been a very active area of research since the
fundamental insights of Davies, Ludwig, Holevo, and others [23, 24, 25]. A
somewhat recent result in this context is for instance Paul Busch’ extension of
Gleason’s theorem to “effect valuations” (i.e., functionals over POVMs) [19].

We should also mention a very nice example of an experimental setup
which makes full use of the concept of POVMs (even though the authors
assert their dislike for this name!), presented in [26].

There is a further use for the concept of POVM, in a context where the
connection to the quantum theory of measurement is not at all clear: there
are measurements which are intrinsically associated with POVMs, and for
which there is no underlying sharp observable with which to compare the in-
completeness of the resolution of the identity. For instance, as mentioned in
Paul Busch’ chapter, phase observables. Mathematically, we will be consid-
ering the case of maximally symmetric operators in an infinite dimensional
Hilbert space.

10.3.1 Maximally Symmetric Operators: Momentum
on the Half-Line

Consider the momentum operator p̂ = −i�∂x defined on a dense domain
of the Hilbert space of square integrable functions on the half-line, H> =
L2

(
R+, dx

)
. More precisely, it is defined on D(p̂), the subspace of square

integrable absolutely continuous functions ψ whose derivative is also square
integrable, and such that ψ(0) = 0. Clearly, this operator is symmetric on
its domain. Let us write down a set of generalized (weak) eigenfunctions that
provide us with a resolution of the identity. The adequate set, which does
not belong to the Hilbert space and is parametrized by real p, is given by
ψp(x) = exp(ipx/�)/

√
2π�, as is only to be expected. They form a complete

basis, since
∫ ∞
−∞ dpψp(x′)ψp(x) = δ(x′−x). However, they are not orthogonal

(in the generalized sense):
∫ ∞

0

dxψp′(x)ψp(x) =
1
2
δ(p− p′) +

i

2π
P

1
p− p′

,
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where P stands for principal part. This is evidently different from the usual
constructions for self-adjoint operators.

Let us now pass on to the position operator x̂, defined on those square inte-
grable functions on the half-line, ψ ∈ H>, such that

∫ ∞
0

dxx2|ψ(x)|2 < +∞.
This operator is self-adjoint on its domain. Additionally, it is true that
[x̂, p̂] = i� on a dense domain. However, in the case at hand the position oper-
ator is bounded from below, and Pauli’s theorem therefore applies. It follows
that p̂ is not a self-adjoint operator and admits no self-adjoint extension in H>.

We shall now rephrase the statements of the previous two paragraphs in
a different way. The domain of the operator adjoint to p̂, i.e., p̂†, according to
von Neumann’s formula, is D(p̂)⊕N(i)⊕N(−i), where N(±i) are the spaces
of eigenvectors of p̂† with eigenvalues ±i, respectively. This comes about be-
cause, even though p̂, being symmetric, has no imaginary eigenvalues, its ad-
joint does have eigenvectors with imaginary eigenvalues. As a matter of fact,
the functions exp(iλx/�), with λ a complex number with positive imaginary
part, are all of them eigenvectors of p̂† of eigenvalue λ. Notice that the dimen-
sion of N(λ), the space of eigenvectors with eigenvalue λ, is the same for all
λ with positive imaginary part. This is called the first deficiency index of the
operator p̂, while the second one is the dimension of the space of eigenvectors
for any given eigenvalue of negative imaginary part, in our case, 0. That is,
the deficiency indices of p̂ are (1, 0). But self-adjoint operators have deficiency
indices (0, 0), as do essentially self-adjoint operators, which, although not self-
adjoint, have a unique self-adjoint extension, namely, their closure. If we were
to build a self-adjoint extension of p̂ we would need to include somehow those
elements of D(p̂†) that are not in D(p̂), but in such a way that the imaginary
parts compensate. When the deficiency indices are equal, this is achieved by
the use of a unitary transformation from N(λ̄) to N(λ) (this is the von Neu-
mann theory of self-adjoint extensions, whereby each self-adjoint extension in
the Hilbert space of definition of an operator over a dense domain, with equal
defect indices, is given by a unitary transformation between the deficiency
subspaces). As the deficiency indices in our case are different, it is not possi-
ble to extend p̂ to include an action over the whole of the domain ofD(p̂†) such
that the imaginary parts compensate. Since p̂ is a closed operator, symmetric
over its domain, which is dense in H>, and its deficiency indices are unequal,
one of them being 0, we say that it is a maximally symmetric operator, and
the previous result is that it admits no self-adjoint extension over H>.

Retaking the complete set of generalized eigenfunctions ψp(x), we can
construct a POVM F . The concept has been introduced in the preceding
section, and illustrated for the discrete case. In the present case, the POVM
is a map from intervals in the real line to the positive operators over a Hilbert
space that satisfies the properties presented above: the map for our case is
given by

〈φ|F ([a, b])ψ〉 =
∫ b

a

dp
∫ ∞

0

dx
∫ ∞

0

dy φ(x)ψp(x)ψp(y)ψ(y) ,
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over all φ, ψ ∈ H>. This map sends intervals of the real line to positive
operators acting on H>, which add together when the intervals are disjoint,
and which add to the identity operator when summed over the real line,
because of the completeness proved above. This differs from the usual decom-
positions for self-adjoint operators in that it does not fulfill the property that
the positive operators be projectors, i.e., in our case F ([a, b])2 �= F ([a, b]),
because of the lack of orthogonality shown above.

Now we have the POVM associated with p̂, we can reconstruct the operator
and the probability distribution of its values. The action of the operator is
given by

(p̂ϕ)(x) =
∫ ∞

−∞
dp

∫ ∞

0

dy pψp(x)ψp(y)ϕ(y) .

The probability distribution for its possible values over a state ϕ is

Πϕ(p) =
∣∣∣∣
∫ ∞

0

dxψp(x)ϕ(x)
∣∣∣∣
2

.

Notice that this indeed satisfies all the requirements for it to be a probability.
Let us see in more detail the relationship between the probability den-

sity and the POVM. We have written above the expression for the action of
F ([a, b]). Symbolically, we can write F (dp), and its expectation value on a
state ϕ is

〈ϕ|F (dp)ϕ〉 =
∫ ∞

0

dx
∫ ∞

0

dy ϕ(x)
eip(x−y)/�

2π�
ϕ(y) dp

= Πϕ(p)dp .

The expression just written defines in fact 〈φ|F (dp)ψ〉, for all “decent” states
|φ〉 and |ψ〉, and therefore the whole POVM. This comes about as follows. Let
|ϕ1〉 = |φ〉 + |ψ〉 and |ϕ2〉 = |φ〉 + i|ψ〉. On the one hand,

Πϕ1(p)dp = Πφ(p)dp+Πψ(p)dp+ 〈φ|F (dp)ψ〉 + 〈ψ|F (dp)φ〉 .

On the other,

Πϕ2(p)dp = Πφ(p)dp−Πψ(p)dp+ i〈φ|F (dp)ψ〉 − i〈ψ|F (dp)φ〉 ,

whence it follows

〈φ|F (dp)ψ〉 =
1
2

(Πϕ1(p) − iΠϕ2(p) − (1 − i)Πφ(p) − (1 + i)Πψ(p)) dp .

Furthermore, the domain of the operator associated with the POVM is also
defined by Πψ(p): by integration by parts it can readily be seen that the do-
main of the operator p̂ is precisely the set of states ψ for which the second mo-
ment of the probability distribution Πψ(p) is finite, and there it coincides with
‖p̂ψ‖2. Therefore, the probability density written above defines the POVM
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and the operator with it associated. Notice also that the probability density
need not be a continuous function. The only requirement is that Πψ(p)dp be
a good measure on the real line.

Another important property of the POVM is covariance under displace-
ments of momenta, which reflects the commutation relation [x̂, p̂] = i�.
Namely, it is readily computed that, for all real q,

〈φ|eiqx̂/�F ([a, b])e−iqx̂/�ψ〉 = 〈φ|F ([a+ q, b+ q])ψ〉 .

In terms of the probability density, the statement is that

Πψq(p) = Πψ(p+ q) ,

where ψq = e−iqx̂/�ψ is the shifted state.
The probability density, written above for the case of pure states, can

be easily generalized to mixed states. Let ρ(y, x) be the matrix elements of
the density matrix ρ̂ in the position representation. The probability density
associated with this density matrix is then

Πρ(p) =
∫ ∞

0

dx
∫ ∞

0

dy
eip(x−y)/�

2π�
ρ(y, x) .

In what follows we will use only pure states in the discussion, bearing in mind
that the generalization to mixed states is straightforward.

It would seem that something akin to the spectral theorem of self-adjoint
operators has been achieved, and this is indeed the case. The difference, how-
ever, lies in that the expectation value of higher-order powers of p̂ on a state
ψ, 〈ψ, p̂nψ〉, does not necessarily coincide with the corresponding moment of
the distribution Πψ(p), i.e.,

∫ ∞
−∞ dp pnΠψ(p), for n ≥ 3. For the case at hand,

for instance, this happens already for n = 3 if ψ′(0) �= 0. As a matter of
fact, in such a situation the expectation value for p̂3 has an imaginary part.
Nonetheless, the measures of momenta can be readily associated with Πψ(p),
which carries the relevant physical information. As such, there is no further
need to complicate the situation by requiring ancilla or further detailed de-
scription of the measurement process; at least, not more detailed than what
we normally require for the analysis of momentum in the full line.

10.3.2 Naimark’s Dilation Theorem

Even so, we would normally like to understand the constructions above in
terms of the more usual recipes for self-adjoint operators. We shall now make
essential use of the uniqueness theorem for POVMs of maximally symmetric
operators: given a maximally symmetric operator Â over a Hilbert space H,
there is a unique POVM, FA (unique up to isomorphisms), such that its first
operator moment coincides with the operator, and that the set of states over
which the second moment exists is precisely the domain of Â [21, 27]. This
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means that if we are to construct by whichever means a POVM such that it
fulfills these conditions, we will be obtaining again the same POVM.

Moreover, Naimark’s dilation theorem tells us that any POVM associated
with a symmetric operator defined on a dense subset of H can be constructed
from a self-adjoint extension of the operator to a larger space H̃, as follows:
let E be the projection valued measure of the self-adjoint extension (i.e., a
POVM that satisfies the further requirement that E([a, b])2 = E([a, b])), and
P the projection operator from H̃ to H. Then F ([a, b]) := PE([a, b]) is a
POVM associated with the symmetric operator.

As a consequence, if we are to build a self-adjoint extension of p̂ in a larger
space, we reproduce the unique POVM and the whole of the physical content
of the operator from the usual analysis for the self-adjoint extension and a
projection. Notice however that the possible extensions are infinite. Not so
the POVM, and that makes the freedom of choice of extension even more
interesting.

Back to the case of p̂ = −i�∂x defined on the half-line, we see that there is
a simple possibility: to extend the operator to the full line, i.e., −i�∂x defined
on a dense subset of H = L2(R, dx). Naturally enough, the action of this
operator on the elements of D(p̂) is the same as that of p̂, so it is an extension.
This is not the only self-adjoint extension on the whole real line, of course. As
a matter of fact, the deficiency indices for the direct sum of the momentum
operators on the positive and negative half-lines are (1, 1), thus signaling that
a one-dimensional continuum of alternative self-adjoint extensions exist. They
differ by the presence of a jump function located on x = 0. However, most
natural is the momentum on the full line, defined over absolutely continuous
functions, i.e., with no jump on x = 0. This is a self-adjoint operator, for
which the standard spectral analysis is applicable.

More concretely, the projection valued measureE is given by the expression

〈φ|E([a, b])ψ〉 =
∫ b

a

dp
∫ ∞

−∞
dx

∫ ∞

−∞
dy ψp(y)ψp(x)φ(x)ψ(y) ,

with ψp(x) = exp(ipx/�)/
√

2π�, as before, but now defined over the whole
real line. The projection P in our case is simply (Pψ)(x) = Θ(x)ψ(x), with
Θ being Heaviside’s step function.

The probability distribution for the momentum operator over the whole
real line for a state ψ is of course the modulus squared of the wave function
in the momentum representation, and its restriction to states that belong
to D(p̂) is none other than the probability distribution associated with the
POVM.

We see then that the reason we could not do the standard analysis for
the momentum operator on the half-line is that we are being, in a way, far
too restrictive in the behavior near x = 0 of the states on which it can act.
There is a reminder of the full line, seen for instance in the principal part that
forbids orthogonality, or in the fact that the higher moments of the probability
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distribution do not in general agree with the expectation value of powers of
the restricted momentum operator. If our states were such that the function
ψ and all of its derivatives were zero at x = 0, there would be no problem
with the higher moments, and we would get no imaginary part for the powers
of p̂ over such states. However, such a strong restriction on the allowable wave
functions would cut out many physically sensible cases.

Let us now write slightly more formally the extension procedure we have
performed to reobtain and interpret the probability density: we have started
with a maximally symmetric operator p̂ = −i�∂x acting on the dense do-
main D(p̂) ⊂ H> = L2 (R+, dx), with deficiency indices (1, 0). We have then
considered an extension in L2 (R, dx), making use of the isomorphism

L2 (R, dx) = L2
(
R+, dx

)
⊕ L2

(
R−, dx

)
.

The extension has been the natural one, i.e., −i�∂x on the full line (although,
as we repeatedly stated, this is not the only possible extension; another easy
choice would have been some extension of p̂⊕(−p̂) , for instance). The standard
spectral analysis for this operator produces the probability density, which,
when restricted to H>, gives Πψ(p), the probability density out of which the
POVM for the operator we started from can be built.

10.4 The POVM of the Aharonov–Bohm Time Operator

Within the long-running discussion on the concept of time in quantum me-
chanics, and in particular with respect to the status of the time–energy un-
certainty relations, Aharonov and Bohm introduced in an important paper
[2], among other questions, “a clock” to measure time from the position and
momentum of a freely moving test particle. The corresponding operator was
obtained by a simple symmetrization of the classical expression my/py, where
y and py are, respectively, the position and momentum of the test particle. By
the same token, the operator obtained by symmetrizing the classical expres-
sion for the arrival time at x = 0 of a freely moving particle having position
x and momentum p, t = −mx/p, is given by [5, 28]

T̂AB := −m
2

(
x̂p̂−1 + p̂−1x̂

)
,

Note the minus sign in comparison to the clock time in [2]. In spite of the
somewhat subtle difference (in concept and sign) with the original time oper-
ator introduced in [2] we shall refer to this operator as the Aharonov–Bohm
(time-of-arrival) operator. Without regard for topological considerations, it
is clear that it has the correct commutation relation with the free particle
Hamiltonian on the line, Ĥ0 = p̂2/2m, namely

[Ĥ0, T̂AB] = i�
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(notice that in Heisenberg’s picture this entails that dT̂AB(t)/dt = −1, so
it flows contrary to parametric time, which is the correct sign for a time of
arrival). It is thus a good candidate for a time operator, with the plausible
physical interpretation, given by the correspondence rule, that it is related
to the time of arrival (notice that other quantization rules might possibly
give a different result, although this is the operator obtained not just by
the symmetrization rule, but also by applying Weyl, Rivier, or Born–Jordan
quantizations [29]). However, it also follows, from Pauli’s theorem, that it
cannot be a self-adjoint operator acting on a dense space.

Let us then examine first the question of the domain of T̂AB. In order to do
that, it is useful at this point to consider the Hilbert space of the free particle
in the momentum representation, Hp := L2 (R, dp) (on this space we know
how p̂−1 acts, thanks to the spectral theorem). Formally, we then obtain

T̂AB → i�m

2

(
1
p2

− 2
p

∂

∂p

)
.

There are other alternative expressions, such as −i�mp−1/2∂pp
−1/2, which

would be valid for p > 0, or for p < 0 by analytic continuation, see, e.g., [3].
At any rate, T̂AB understood as a differential operator presents a singular
point at p = 0, and this is the source of all the difficulties that have appeared
in the literature.

The differential operator written above can only be applied to absolutely
continuous functions, but there are further requirements. One such is that
T̂ABψ belongs to Hp, i.e., that it be square integrable. This poses a restric-
tion due to the singularity of the operator at p = 0. On computation, one finds
that the singularity is avoided if the function ψ has one of the following possi-
ble behaviours close to p→ 0: either ψ(p) ∼ p1/2, or ψ(p)/p3/2 → 0. However,
this is not enough to fix the domain of the operator, as Paul noticed long ago
[11]. Given that, at least formally, T̂AB is symmetric, this should also be a re-
quirement on its domain. Integration by parts, and demanding that 〈ϕ|T̂ABϕ〉
be equal to 〈T̂ABϕ|ϕ〉 for all ϕ in the domain of T̂AB, leads us to exclude the
first possibility, thus defining the domain of T̂AB, D(T̂AB), as the set of abso-
lutely continuous square integrable functions of p on the real line, such that
ψ(p)/p3/2 → 0 as p → 0 and ‖T̂ABψ‖2 is finite. As for the alternative ex-
pression −i�mp−1/2∂pp

−1/2, let us ask that (Θ(p) − iΘ(−p))ψ(p)/
√

|p| be
absolutely continuous for ψ to be in its domain. This, together with the fur-
ther requirement of symmetry, leads us to a domain that coincides with that
of T̂AB. Since the respective actions also coincide over this domain, we see
that they are but equivalent differential expressions for the operator, once the
adequate domain is taken into account.

In order to apply von Neumann’s formula, we have to check whether there
are states ψ in Hp such that for all ϕ ∈ D(T̂AB) the following expression
holds:

〈ψ|
(
T̂AB + i

)
ϕ〉 = 0 ,
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since then ψ is an eigenvector of T̂ †
AB with eigenvalue i. Analogously, we

also have to study the case with eigenvalue −i. By integration by parts, and
application of the condition that all functions in D(T̂AB) satisfy, namely, that
ϕ(p)/p3/2 tends to zero as p tends to zero, it is found that there are two
independent eigenvectors with eigenvalue i, and none with eigenvalue −i. The
relevant eigenvectors are

ψ±(p) = Θ(±p)
√
±p e−p2/2m� .

Notice that, contrary to the expectations of some authors [30, 3, 4], both of
them have to be taken into account: there are no requirements of derivability
or continuity for the functions in the domain of the adjoint.

The deficiency indices are therefore (2, 0), and we have a maximally sym-
metric operator. As we have seen in the previous section, this implies that no
self-adjoint extension can exist, and we should redo for this case the analysis
performed for the momentum operator on the half-line. However, the most
convenient way of doing that is by passing to the energy representation, as
was already pointed out by Allcock in his seminal work [31, 32, 33], and em-
phasized again by Kijowski [10, 34]. This change of representation is useful,
from the mathematical point of view, because it implements a theorem [27]
which states that a simple symmetric operator with deficiency indices (n, 0)
can be decomposed as a direct sum of n operators with deficiency indices
(1, 0). Since each of these is in fact isomorphic to the momentum operator on
the half-line, we will be able to use directly the previous results.

The change of representation corresponds to the decomposition of the
Hilbert space Hp into the subspaces of positive and negative momentum,
i.e.,

L2 (R, dp) = L2
(
R+, dE

)
⊕ L2

(
R+, dE

)

= H+ ⊕H− ,

where the first subspace is that of positive momenta, whereas the second
corresponds to negative p. The explicit isomorphism is given by

ψ±(E) = (m/2E)1/4ψ(±
√

2mE) ,

ψ(p) =
(
|p|
m

)1/2 [
Θ(p)ψ+

(
p2

2m

)
+Θ(−p)ψ−

(
p2

2m

)]
,

where ψ ∈ Hp, ψ± ∈ H±, and the isomorphism relates ψ ↔ (ψ+, ψ−). The fac-
tor E−1/4 is due to the change in the measure from dp to dE and reciprocally
for the factor (|p|/m)1/2. The interesting point is that given this isomorphism,
the time operator of Aharonov and Bohm takes the form −i�∂E. The domain
of the operator, D(T̂AB), is sent by the isomorphism into the direct sums of
square integrable absolutely continuous functions in each subspace, such that
for each subspace we have the restriction that ψα(E)E−1/2 → 0 as E → 0.
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But this is exactly the case considered above, since the requirement ψα(0) = 0
and the square integrability of ψ′

α(E) imply the restriction stated before. In
other words, we have the isomorphism

T̂AB = (−i�∂E) ⊕ (−i�∂E) = T̂+ ⊕ T̂− ,

where T̂± are isomorphic to the momentum operator on the half-line.
Therefore, the constructions carried out in the previous section can be im-

mediately translated to this situation, but taking into account that the energy
spectrum is degenerate whereas the position spectrum is not. For instance, the
complete nonorthogonal set of generalized eigenfunctions ψp is doubled here
into a set with a continuous parameter t (the notation is intended to be sug-
gestive) and a discrete one, with values + or −, as follows:

ψ
(t)
+ (E) =

(
1√
2π�

eiEt/�, 0
)

and

ψ
(t)
− (E) =

(
0,

1√
2π�

eiEt/�

)
.

In what follows we will not make the explicit distinction between the element
of the full Hilbert space and its component, if only one is zero.

These functions transform under the isomorphism to give the following
expressions:

ψ̃(t)
α (p) = Θ(αp)

( αp

2πm�

)1/2

eip
2t/2m� . (10.3)

As Dirac’s notation will also prove useful in this context later, we shall also
denote these functions as

〈p|t, α〉 = ψ̃(t)
α (p) , (10.4)

thus defining the state |t, α〉.
It is straightforward to prove completeness, i.e.,

∑
α

∫ ∞
−∞ dt ψ̃(t)

α (p′)ψ̃(t)
α (p) =

δ(p− p′). Alternatively,
∑
α

∫ ∞
−∞ dt ψ(t)

α (E′)ψ(t)
α (E) = δ(E − E′)1, where 1 is

the two by two identity matrix (δ(E−E′)1 is the identity operator on the full
Hilbert space H+ ⊕H−). In Dirac’s notation,

∑

α

∫ ∞

−∞
dt |t, α〉〈t, α| = 1 .

Nonorthogonality is also a direct translation:

〈t′, α′|t, α〉 =
∫ ∞

0

dE ψ(t′)
α′ (E)ψ(t)

α (E) =
∫ ∞

−∞
dp ψ̃(t′)

α′ (p)ψ̃(t)
α (p) =

=
1
2
δαα′

(
δ(t− t′) +

i

π
P

1
t− t′

)
.
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It now behooves us to compute the POVM or, alternatively, the probability
distribution for measured values of the T̂AB operator from which it can be
readily recovered. By direct translation, we can write the probability density as

ΠK
(ψ+,ψ−)(t) =

∣∣∣∣
∫ ∞

0

dE
e−iEt/�

√
2π�

ψ+(E)
∣∣∣∣
2

+

∣∣∣∣
∫ ∞

0

dE
e−iEt/�

√
2π�

ψ−(E)
∣∣∣∣
2

,

in the energy representation, or as

ΠK
ψ (t) =

∣∣∣∣
∫ ∞

0

dp
( p

2πm�

)1/2

e−ip
2t/2m�ψ(p)

∣∣∣∣
2

+

∣∣∣∣∣

∫ 0

−∞
dp

(
−p

2πm�

)1/2

e−ip
2t/2m�ψ(p)

∣∣∣∣∣

2

,

in the momentum representation. Using Dirac’s notation, it would read

ΠK
ψ (t) = |〈t,+|ψ〉|2 + |〈t,−|ψ〉|2 .

This is, of course, the same as Kijowski’s probability density, introduced in
Sect. 10.2. The essential property of covariance under transformations gen-
erated by the Hamiltonian is also evident and a direct translation of the
covariance property signaled in the previous section. Physically, it means that
the probability of arriving at t for a given state is equal to the probability of
arriving at t− τ for the same state evolved a time τ . This is the reflection on
the probability density of the canonical commutation relation [Ĥ, T̂AB] = i�.

The domain of T̂AB, now defined through the POVM, can be characterized
as the set of elements of the Hilbert space for which

∫ ∞
−∞ dtΠK

ψ (t)t2 is finite,
and this quantity defines 〈T̂ABψ|T̂ABψ〉 (thus realizing the minimum variance
demanded by Kijowski and Werner [10, 35]).

As before, we would like to understand all these constructions in terms
of a generalized self-adjoint extension, by using the uniqueness of the POVM
associated with a maximally symmetric operator, and Naimark’s theorem.
From the structure of the time operator of Aharonov and Bohm, namely
T̂AB = (−i�∂E) ⊕ (−i�∂E) on L2 (R+, dE) ⊕ L2 (R+, dE), it follows that
a natural and simple extension (natural in the sense of following the nat-
ural extension in the analogy) is the operator (−i�∂E) ⊕ (−i�∂E) acting
on L2 (R, dE) ⊕ L2 (R, dE), which is obviously self-adjoint. In other words,
we have introduced negative energies, respecting the twofold degeneracy of
the initial spectrum. On this space the (doubled) Fourier transform acts as
a unitary transformation that provides us with the time representation of
the states, and the probability density for the time of arrival over a pure
state in this extended space is nothing but the modulus squared of the
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wave function in the time representation. Notice that the time representation
corresponds to the doubled space L2 (R, dt) ⊕ L2 (R, dt). We reobtain the
by now usual probability density for time of arrival, by restriction to the
initial Hilbert space. The restrictions to the initial Hilbert space of the ap-
plications of the spectral theorem are therefore related to ΠK

ψ (t), as stated
before.

The problems that the vicinity of p = 0 (alternatively E = 0) pose for the
analysis of the operator of Aharonov and Bohm are thus seen to be due to
the (physically imposed) restriction to the space of positive energies. There is
a reminder of the negative energies in aspects such as the nonorthogonality
of the set of generalized eigenfunctions, similarly to what happens in the
paradigmatic example of the previous section.

10.5 Other Time Operators

As the perusal of the table of contents of this volume will have made clear,
there are many different time observables to consider. This entails the pos-
sibility that there be several other time operators to consider as well. Many
of those have indeed been examined in Chap. 8, and it is not necessary to
reproduce here a detailed analysis of all those. However, it is instructive to
consider a number of those from the point of view of POVMs. In particular,
Grot, Rovelli, and Tate [3] proposed a self-adjoint modification of Aharonov
and Bohm’s time-of-arrival operator that deserves some attention, and whose
structure can be better understood after analyzing an operator with dimen-
sions of time that appears in periodic systems.

10.5.1 Periodic Systems

Following Pegg [36], let us consider a finite or infinite dimensional system,
with a Hamiltonian bounded from below, whose spectrum is purely discrete.
Without lack of generality, we can assume that the ground state energy is
zero. Assume furthermore that all the other eigenvalues of the Hamiltonian are
commensurate. That is, all the eigenvalues Ei can be written as Ei = 2π�ri/T ,
with ri a natural number, and T is the period. In this case, the following
POVM will provide us with something akin to a time operator:

F (dα) =
∑

i,j

dα

T
e−2πi(ri−rj)α/T |Ei〉〈Ej | .

It is clearly true that ∫ α0+T

α0

〈ψ|F (dα)ψ〉 = 1 (10.5)

for all normalized states.
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The operator constructed from the POVM is thus

Â =
∫ α0+T

α0

F (dα)α =
1
T

∫ α0+T

α0

dαα
∑

i,j

e−2πi(ri−rj)α/T |Ei〉〈Ej | . (10.6)

This operator is not canonically conjugate to the Hamiltonian, as can be
readily computed:

[Ĥ, Â] = i�
∑

i�=j
e−2πiα0(ri−rj)/T |Ei〉〈Ej | = i�

(
|α0〉〈α0| − 1̂

)
, (10.7)

where we have used the definition

|α〉 =
∑

i

e−2πiαri/T |Ei〉 .

Observe that using this definition we can write Â = 1
T

∫ α0+T

α0
dαα|α〉〈α|,

and that the set {|α〉}α∈[α0,α0+T ) gives us an overcomplete resolution of the
identity,

1
T

∫ α0+T

α0

dα |α〉〈α| = 1̂ .

This lack of canonical commutation relations, however, comes about be-
cause of the periodicity of the system. The fact that the energy eigenvalues
are commensurate leads to recurrence, and it is impossible to make out, in
this context, in which particular recurrence we are, just from observing the
system itself. In order to appreciate this point better, consider the derivative
of the expectation value of the operator Â over a generic state |ψ〉, 〈Â〉,

d〈Â〉
dt

= 1 − |〈ψ(t)|α0〉|2 . (10.8)

The last term can be understood as the probability density of measuring α0

as the value of Â at time t modulo the period. Thus, the expectation value
of Â follows time unless the overlap with α0 becomes big, which forces the
resetting of this system clock.

This example shows one way of spoiling the canonical commutation rela-
tion so as to obtain a time operator; clearly, this is not the only method.

In order to clarify the construction of Pegg, and to understand better
some of the subtleties in interpreting POVMs physically, let us consider a
system with two degrees of freedom. Let the energy eigenstates be written as
|0〉 and |1〉. The Hamiltonian is thus Ĥ = �ω|1〉〈1|. A state |α〉 is given by
|α〉 = |0〉 + exp(−iωα)|1〉, which leads to Â as follows:

Â =
1
T

∫ α0+T

α0

α|α〉〈α| = (α0 +
π

ω
)1̂+

i

ω

(
e−iωα0 |1〉〈0| − eiωα0 |0〉〈1|

)
. (10.9)
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None of the |α〉 states is an eigenvector of Â. The commutator of the
Hamiltonian and Â is easily computed to be

[Ĥ, Â] = i�
(
e−iωα0 |1〉〈0| + eiωα0 |0〉〈1|

)
= i�

(
|α0〉〈α0| − 1̂

)
. (10.10)

Let us consider the probability for the state to be found in state α〉 if the
state of the system is a generic normalized (|β|2+|γ|2) state |ψ〉 = β|0〉,+γ|1〉:
it is simply |〈α|ψ〉|2/2 (because of normalization of |α〉). Since we have a
resolution of the identity in terms of the states |α〉, we can actually define
a different probability: the probability density for the measurement adapted
to the POVM to produce the result α. This is given by the the probability
density P (α)

P (α) =
1
T
|〈α|ψ〉|2 =

1
T

(
1 + β̄γeiωα + βγ̄e−iωα

)
. (10.11)

Notice that the probabilities mentioned pertain to different measurements. In
the first case, we are asking whether the state is α or not, with probabili-
ties |〈α|ψ〉|2/2 and 1 − |〈α|ψ〉|2/2; the operator being measured is |α〉〈α|/2.
Whereas in the second case we are asking with which probability will the
outcome α be the result of measuring the operator Â. The process of carrying
out a number of measurements of Â adapted to the POVM provides us with
the density P (α), and the expectation value and the second moment of this
distribution are computed to be

〈α〉 =
∫ α0+T

α0

dααP (α) = α0 +
π

ω
− i

ω

(
γβ̄eiωα0 − βγ̄e−iωα0

)
(10.12)

Δα2 =
∫ α0+T

α0

dα (α− 〈α〉)2 P (α) =

=
π2

3ω2
+

1
ω2

(
γ2β̄2e2iωα0 + 2βγ̄e−iωα0 + 2γβ̄eiωα0 + (10.13)

+β2γ̄2e−2iωα0 − 2|γ|2|β|2
)
. (10.14)

On the other hand, one can obtain

〈ψ|Â|ψ〉 = α0 +
π

ω
− i

ω

(
γβ̄eiωα0 − βγ̄e−iωα0

)
, (10.15)

(ΔA)2 = 〈ψ|Â2|ψ〉 − 〈ψ|Â|ψ〉2 =

=
1
ω2

(
1 + γ2β̄2e2iωα0 − 2|γ|2|β|2 + β2γ̄2e−2iωα0

)
, (10.16)

which differs in the variance. This comes about because the experimental
arrangement is dedicated to measuring Â and not Â2; in other words, the
measurement is unsharp.

Notice that in this case a self-adjoint operator has been constructed, which
is not canonically conjugate to the Hamiltonian. This should be compared to
the construction by Grot, Rovelli, and Tate [3].
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10.5.2 Grot, Rovelli, and Tate

Instead of the operator T̂AB of Aharonov and Bohm, which can be written in
the momentum representation as −i�mp−1/2∂pp

−1/2, Grot, Rovelli, and Tate
proposed the set of operators T̂ε, with momentum representation

T̂ε → −i�m
√
fε(p)∂p

√
fε(p) ,

where fε(p) equals 1/p for |p| bigger than a given ε, and is regular at the
origin.

These operators are thus self-adjoint, after the adequate choice of domains
and closure, and do not present the problems that Aharonov and Bohm’s
operator have. However, physically they are nowhere as useful as T̂AB, because
a state which should be arriving very close to a given time has its arrival
distribution very much spread out from that maximum: Oppenheim et al. [4]
pointed out that the particle, at the predicted time of arrival, is found far
away from the point of arrival with probability 1/2. This should be compared
with the analysis of the generalized states |t, α〉 in [28]. In fact, this quirk of
the eigenstates of T̂ε is due to the following expression:

[Ĥ0, T̂ε] = i�p̂fε(p̂) .

As in the case of Pegg’s operator, Pauli’s theorem is circumvented because
the commutation relation is not canonical. This means that this operator does
not fully flow with time, and this is the source of the difficulties mentioned
before.

10.6 Arrival States

Let us consider again Aharonov and Bohm’s time-of-arrival operator. It sat-
isfies the canonical commutation relation only with the Hamiltonian of the
free particle. Indeed, it has been purpose-built for such an instance, and it
becomes meaningless in an interacting context. However, having been able
to understand fully this observable in the free case, we are even more con-
vinced that similar observables can be given meaning for all circumstances.
A generic axiomatic approach à la Kijowski seems somewhat misplaced, since
for the generic case it is not certain that a particle will arrive at a given point,
there is no Galilei invariance, the generic stationary state will be radically
different from the momentum eigenstates, etc. We are thus forced to think
anew.

For this purpose, it is useful to recall the expression of Kijowski’s distri-
bution in terms of the states |t, α〉, defined in (10.3) and (10.4):
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ΠK
ψ (t) =

∑

α=±
|〈t, α|ψ〉|2 . (10.17)

The (nonnormalizable) states |t, α〉 have been obtained as (generalized)
eigenstates of Aharonov and Bohm’s operator,4 and thus are inextricably
tied to the free particle. Notice in particular that the covariance property
of Kijowski’s distribution is transmuted into

eiĤ0s/�|t, α〉 = |t+ s, α〉 ,

where again Ĥ0 = p̂2/2m is the free particle Hamiltonian. It follows that we
could rewrite expression (10.17) as

ΠK
ψ (t) =

∑

α=±
|〈0, α|ψ(t)〉|2 .

Further note that instead of the labels α = ±, which refer to the sign of
the components of momenta that make up the states |t, α〉, we might as well
use labels β = {L,R}, standing for arrivals from the left (corresponding to
positive momenta) or the right (negative momenta). Additionally, let us re-
mark that in all the preceding discussion the point of arrival has been fixed
at the origin of coordinates, while further generality might be achieved by
simple translation. All this suggests that we give a special emphasis to the
state |0, α〉 = e−iĤ0t/�|t, α〉 and its (spatial) translates. To remark this em-
phasis we shall denote those states as |vβ,x〉, which we will refer to as “arrival
states from the {left,right} at point x”, or as “crossing states.” The relevance
of these states for our purposes lies in the first place in the fact that the
(formal) operator ∑

β

|vβ,x〉〈vβ,x|

is a quantization of the classical observable JL − JR, where JL,R is the flux
of particles from the {left,right}. Secondly, the rewriting of Kijowski’s distri-
bution for the free particle, (10.17), in terms of the crossing states,

ΠK
ψ (t) =

∑

β=L,R

〈ψ(t)|vβ,x〉〈vβ,x|ψ(t)〉 , (10.18)

brings forward a change of emphasis: whereas in (10.17) the time-of-arrival
distribution is obtained from the overlap of the initial wave function with the
states associated with arrival of free particles at the instant t, from the left
(α = +) or from the right (α = −), in (10.18) it is computed as the overlap

4 Normalizable states formed by their linear combination behave as expected for
an arrival state, and its arrival becomes arbitrarily sharp in space–time as shown
in [28].
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of the evolved wave function with the constant states that measure arrivals
(from the left, β = L, or from the right, β = R). As it stands, for the free
particle case, this rewriting is utterly irrelevant. Not so, however, in a more
general context.

The actual procedure of measuring times of arrival could be naively
described as follows: set up a good particle detector at the point of arrival,
prepare the state with whichever preparing procedure one desires, start run-
ning the clock whenever the preparing procedure has been carried out, and
note down the instant the detector clicks. This entails a “waiting” disposition
of the detector. On the other hand, an expression such as (10.17) pertains
to a “predictive” measurement of the density of arrivals, which implies full
knowledge of the evolution of the particle after a measurement. Imagine that
we prepare a state and erroneously assume that the particle will evolve freely,
while in fact there is a potential which randomly changes in time. The pre-
dictive measurement would undoubtedly fail, while the “waiting” procedure
would describe adequately the different arrivals. This second perspective could
be also termed “unconditional”: the arrival or otherwise of a particle at point
x is directly measured in physical space at every instant, using local defini-
tions that are in no way conditioned by the different potentials in which the
particle might be moving.

This point of view, insisting on the form (10.18) of Kijowski’s distribu-
tion and its extension to situations different from the free particle, has been
put forward in [20], inspired by Wigner’s formalization of the time–energy
uncertainty relation [37], and further developed in [38]. In this latter work,
the realization that there are many different alternative quantizations of the
classical observable JL − JR led the authors to an analysis of several pro-
posals for generalizations to the interacting case of Kijowski’s distribution
[39, 40, 41, 42], using the concept of “crossing state.”

On the strength of the analysis carried out in [38], in which we found that
for the class of crossing states studied there only the one described above
had the correct behavior in quasiclassical situations, we suggest that the best
“ideal”5 description of the measurement of times-of-arrival we have so far
consists of (10.18), applied also to non-free particles, i.e. with states |ψ(t)〉
evolved with arbitrary (one-dimensional) Hamiltonians.

The interpretation of expression (10.18) must also change when applied
to the interacting case. In such a situation, it is no longer a probability

5 We use the term “ideal” to denote quantities that are computed intrinsically to
the system, i.e., without introducing further couplings to measurement apparatus
or ancillary systems. Please note that otherwise this term is very often value-
laden and has been used by various authors in many different ways. In particular,
in the literature “ideal” detectors often denote other quantum systems used for
measurement, whereas here we are asserting that at this level of abstraction there
could exist a detector for which the measurement procedure can be described with
variables intrinsic to the system. In this manner, the position operator, to give
but an example, has an associated ideal measurement procedure.
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density, but simply an arrival density. For instance, in the harmonic oscillator
there might be many arrivals, or it could happen that there is hardly
any transmission through a potential barrier, thus depleting the number of
arrivals.

This procedure, and the interpretation of Πψ(t) as an arrival density, sug-
gests another extension to the ideal description of times of arrival to the many
particle case. When we have a system with, say, two particles, our ideal de-
tector (see footnote 5) might click twice at different times. As before, the
number of actual arrivals is highly dependent on the potential and the prepa-
ration state. In the case of several free particles, the integral

∫ +∞
−∞ dtΠψ(t)

should be exactly the number of particles present. The ideal detector being
considered would have an individual response to the arrival of each individual
particle, and thus should be represented by a one particle operator in the
formalism of second quantization.

Before addressing this construction in the next section, let us point out
that the analysis we have just carried indicates that observable quantities
need not be associated with POVMs in a simple manner. Consider the case of
one single particle in a scattering situation. The density of arrivals does not
normalize to one in general: the particle might be reflected, and no arrival
detected behind the scattering barrier. This implies that the naive POVM
would not be normalized to one, i.e. the sum of the components will not be
the identity. Brunetti and Fredenhagen have proposed a way out for this case:
suitably redefine the corresponding operator, obtained as the first operator
moment of the density of arrivals, or else as

T̂x,arrivals =
∑

β=L,R

∫ +∞

−∞
dt t U †(t)|vβ,x〉〈vβ,x|U(t) ,

with U(t) the applicable evolution operator. This operator T̂x,arrivals has a
kernel (a null subspace: the set of states which it sends to 0). Consider the
pre-Hilbert space obtained by quotienting the whole Hilbert space by this
subspace. Complete it to a Hilbert space in the usual manner. A new oper-
ator T̂ ′

x is defined over this new space as follows: let [ψ] be an element of
the quotient Hilbert space with representative ψ in the original space. Then
T̂ ′
x[ψ] = [T̂x,arrivalsψ]. This operator will have an associated POVM adequately

normalized.
If the possibility of many arrivals exists, a similar construction might be

carried out, by sectoring the Hilbert space into subspaces according to the
value of

∫ +∞
−∞ dtΠψ(t). It is however far simpler to concentrate on the sim-

ple definition of the density of arrivals, without needing to have recourse to
POVMs, except to justify that we remain in the realm of standard quantum
mechanics.

In a similar manner, we need not be concerned about the POVM character
or otherwise of an extension to the case of many particles, to which we now
direct our attention.
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10.7 Times of Arrival for Identical Particles

We have made more explicit the many particle distribution sketched above in
[43], of which this subsection is an abbreviated version. Following the standard
construction of the formalism of second quantization (see [44] for reference),
adequate for one particle operators, we define creation and annihilation oper-
ators v̂†β(x) and v̂β(x), as those that connect the crossing state |vβ,x〉 and the
vacuum state |0〉,

|vβ,x〉 = v̂†β(x)|0〉 and v̂β(x)|vβ,x〉 = |0〉 .

In terms of the creation and annihilation operators for plane waves, these
operators are written as

v̂β(x)=
∫ +∞

−∞
dp〈vβ,x|p〉âp =

∫ +∞

−∞
dp

( αp

2π�m

)1/2

Θ(αp)eipxâp ; (10.19)

v̂†β(x)=
∫ +∞

−∞
dp 〈p|vβ,x〉â†p=

∫ +∞

−∞
dp

( αp

2π�m

)1/2

Θ(αp)e−ipxâ†p (10.20)

(remember the correspondence β = L↔ α = + and β = R↔ α = −).
Now, by inspection of expression (10.18) and following standard procedure,

we define an arrival density at time t at point x as

Πψ(t, x) =
∑

β=L,R

〈ψ(t)|v̂†β(x)v̂β(x)|ψ(t)〉 . (10.21)

In this definition we have obviated all topological considerations of domains,
closure and the like.

Actually, when dealing with more than one particle, there are other observ-
ables related with times of arrival, such as the time–time correlation function.
The quantum–mechanical description and computation of those quantities is
carried out, in the formalism of second quantization, as expectation values of
products of operators in Heisenberg’s or interaction representation. For this
purpose it is convenient to define the arrival density operator at instant t and
point x,

Π̂(t, x) = U †(t)
∑

β=L,R

v̂†β(x)v̂β(x)U(t) =

=
∫
dp dq

|pq|1/2
2π�m

Θ(pq)ei(q−p)x/�â†p(t)âq(t) , (10.22)

where â†p(t) and âq(t) are the time evolved creation and annihilation operators
for plane waves, with evolution operator U(t), i.e., â†p(t) = U †(t)â†pU(t) and
similarly âp(t) = U †(t)âpU(t). Notice that

Πψ(t, x) = 〈ψ|Π̂(t, x)|ψ〉 ,
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which is an alternative formulation of the covariance property of the density
of arrivals. From these operators Π̂(t, x) we can construct a time operator
that would be a generalization of Aharonov and Bohm’s, as follows:

T̂x =
∫ +∞

−∞
dt t Π̂(t, x) =

∫
dt dp dq

|pq|1/2
2π�m

Θ(pq)ei(q−p)x/� t â†p(t)âq(t) .

By construction this is simply a one particle operator, which coincides with
T̂AB over states whose content is just one free particle. A particularly impor-
tant property of the arrival density operator is that the density of arrivals
Πψ(t, x) over any state is covariant in time if the Hamiltonian is independent
of time (as has been assumed all along). Even though the properties of covari-
ance and positivity do not, by themselves, completely fix the density of times
of arrival, they are minimal requirements, the lack of which would seriously
impair any proposal.

For the sake of completeness, let us note down the flux operator for many
particles:

ĵ(0, x) =
−i�
2m

(
ψ̂†(x)∂xψ̂(x) −

(
∂xψ̂

†(x)
)
ψ̂(x)

)
=

=
1

4π�m

∫
dp dq ei(q−p)x/�(p+ q)â†pâq . (10.23)

At other times one obtains ĵ(t, x) as

ĵ(t, x) = U †(t)ĵ(0, x)U(t) =
1

4π�m

∫
dp dq ei(q−p)x/�(p+ q)â†p(t)âq(t) ,

(10.24)
(again assuming that the Hamiltonian is independent of time).

A straightforward comparison of (10.22) and (10.24) reveals that in Π̂ we
compute a geometric mean, to be contrasted to the arithmetic mean charac-
ter of the flux operator. The quantities being averaged are the incoming and
outgoing momenta, weighed with an oscillatory factor dependent on the posi-
tion of arrivals. As a matter of fact, the comparison is not as straightforward,
since the density of arrivals is positive, whereas this is not the case for the
flux. We thus see that the arrival density operator can be understood as a
quantization of the classical flux, but, more adequately, as a quantization of
JL − JR, where {JL, JR} are the fluxes of {left,right} going particles.

The numerical computation of densities of arrivals for symmetric and an-
tisymmetric states of two particles (required for bosons and fermions, respec-
tively) reveals the behavior one would normally expect [43]. The full bosonic
or fermionic character of the particles considered, however, will only be ap-
parent in an arrival–arrival correlation function; in particular in the two point
function

〈ψ| : Π̂(t, 0)Π̂(0, 0) : |ψ〉 , (10.25)

where : : stands for normal ordering (notice that : Π̂(t, 0)Π̂(0, 0) : is in fact
the two particle part of Π̂(t, 0)Π̂(0, 0)).
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10.8 How can Kijowski’s distribution be measured?

Within the standard interpretation, the predicted values of observable quan-
tities are only realized when the “proper” measurement is performed. It is
important to keep this in mind to avoid conceptual pitfalls such as the idea
that a zero probability density at a point is not compatible with ΠK different
from zero there; in fact it is, since the corresponding operators do not com-
mute. This has generated some debate [45, 46]. What a measurement for some
abstract operator should really be in practice is not something that follows
directly from the formalism, and in fact the absence of systematic recipes to
achieve that goal was seen by Wigner as a major drawback of quantum the-
ory [47]. In the particular case of the arrival time, the measurement model of
Chap. 8 [48], provides in principle a set of operations to measure Kijowski’s
distribution: Assume first a sharply defined laser-illuminated region for x ≥ 0
and ground state atoms incident from the left with positive momenta. The dis-
tribution of first (fluorescence) photons is distorted with respect to an ideal
distribution, such as ΠK , because of the backaction of the laser which in-
duces atomic reflection from the laser region at very low incident energies. By
enhancing the relative weight of low-energy components in the initial state
to compensate for these losses,6 the first photon distribution coincides with
Kijowski’s [49].

If the laser-illuminated region has, more reallistically, a finite width, there
will be undetected atoms both because of too low or too high incident energies
with respect to the characteristic atom–laser interaction energy. Applying a
similar modification of the initial state to compensate for the two effects and
taking the limit of a point-like laser, Kijowski’s distribution is again obtained
[50], but now for states with both positive and negative incident momenta. An
extension to the case with potential interaction has been considered in [50].

10.9 Conclusions and Outlook

The different constructions presented in this chapter provide a good setting
for the time of arrival within the language of quantum mechanics, as the ideal
concept to which experiments might converge, in exactly the same manner
as operators such as the position operator provide the ideal concept to which
experiments might converge. In fact each relevant experiment will probably
have to be thought anew, and its most salient facts properly modeled. At
any rate, we believe ourselves justified in thinking that the long prevalent
view that there is no place for ideal time observables has been superseded,

6 This is formally done by the operator normalization procedure of Brunetti and
Fredenhagen [12] and requires the vanishing of wave packet component at zero
energy. In practice, the initial state modification, up to a normalization constant,
may be performed automatically, i.e., for arbitrary incident states, by “filtering”
the incident state with an appropriately chosen potential interaction previous to
the laser region.
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and that we do have the (admittedly elementary) tools for dealing with the
simplest ones without in any way distorting the standard framework of quan-
tum mechanics. Actually, measuring the ideal distribution of Kijowski in an
interesting case, i.e., when it differs significantly from the current density, is
still an open experimental challenge, but at least the limits in which an opera-
tional procedure would lead to that goal have been found. In a complementary,
opposite direction, we might also wonder what are present day time-of-flight
experiments actually measuring: what is the ideal quantity that we get from
them, possibly in some high accuracy limit? To answer this question it is nec-
essary to use models and describe specific measurements [52, 53, 54, 55, 56].
In particular, the measurement model in [48, 51, 57] has shown that from the
distribution of first spontaneous photons, and depending on the experimen-
tal setting (defined by different parameters such as laser intensity, incident
energy, laser detuning, or atomic lifetime) and on the realization of deconvo-
lutions to subtract expected measurement delays, different quantities may in
principle be obtained apart from arrival time distributions, such as current
densities, particle densities, kinetic energy densities and others [48, 58].

The theory of E. Galapon and coworkers [59, 60, 61, 62, 63], based on self-
adjoint time-of-arrival operators for confined systems has also been shown to
lead to Kijowski distribution as the length of the confining box increases to in-
finity [62]. Moreover the confined time-of-arrival eigenfunctions evolve to have
point supports at the arrival point at their respective eigenvalues in the limit
of arbitrarily large confining lengths. A direct operational interpretation of the
discrete times of the confined case is still missing and is one of the challenges
for future research. In any case, the discrete–continuum smooth transition
found may be a useful tool to generate new theories of first time of arrival
with interacting potentials, that can be later translated to the continuum and
operationally interpreted or compared with existing operational proposals.
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11.1 Time Operators Versus Real Measurements

Time has a unique status in quantum mechanics. In general, to develop a
quantum–mechanical description of some observable, one writes down an op-
erator whose eigenvalues represent the possible outcomes of the measurement;
the operator is chosen to yield the classical results in the correspondence-
principle limit. Generally, this latter limit is unambiguous.

In the case of time measurements, there are in fact two problems with this
prescription. First, as is well known, it is not possible to construct a Hermitian
time operator canonically conjugate to the Hamiltonian (see the Introduction
for some of the subtleties, however, connected with this argument of Pauli’s).
Second, though less well appreciated, there is no such thing as a time mea-
surement in classical physics either. Just as in quantum physics, time plays
the role of a free parameter classically, while observables such as position and
momentum evolve as functions of time. When we measure “the time,” what
are we doing? We cannot measure the time of a particle; the particle exists at
all times, after all. We may look at a clock and measure the position of one
of its hands, and infer a statement about the time based on some (hopefully
good) assumptions as to how that position evolves temporally. If we measure
correlations between this clock-hand position and some other observable, such
as the state of a particle detector, we may interpret this in terms of detection
times, etc. But of course, this time must be referred to some origin. Therefore,
we really measure durations—whether this is the duration of an ion’s flight
in a time-of-flight mass spectrometer, or the length of time between a clock
being being synchronized to NIST and a detector observing neutrinos from a
distant supernova, it is always a duration.

In practice, there are many different experimental techniques for measuring
quantities with dimensions of time, but all involve measuring an observable
with some other dimensions and then relying on some calibration. Although
these techniques have various degrees of directness, and some rely on internal
degrees of freedom while others rely on external ones, the problem is generally
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not discussed at the classical level, because the different techniques always
yield the same results. Time is what a clock measures. We all have a long-
standing working definition of what this means, and when a new technique is
developed for measuring time, it is judged on whether or not it agrees with
existing clocks. Fundamentally, this is all we mean by the accuracy of a time
measurement; if it agrees with the steady evolution of the Earth around the
Sun and the moon around the Earth, and all the other processes we take to
proceed at a constant rate in nature, then it serves its purpose, because we
have no other direct access to the free parameter t.

A common paradigm for measuring delay times in practice is as follows.
One event serves as a “trigger.” This event (particle detection, for instance)
causes a circuit to fire, setting off a linear voltage ramp. A second event sends
a “stop” signal, halting the rise of the voltage; the final voltage is thus propor-
tional to the time delay between the “start” and “stop” signals. This voltage is
recorded, as a measure of the time.1 Standard “time-to-amplitude convertors”
function in this fashion; for that matter, an oscilloscope operates the same way,
with the linear voltage ramp hooked up to control the horizontal sweep on a
display, so that a measurement of the position of a spot serves as an indirect
measurement of the time of an event relative to some trigger. Many practical
time measurements are even less direct. Optical time-of-flight measurements
may rely on interference between two waves with a given relative delay; our
understanding of interference and prior knowledge of the optical frequency
allows us to infer the delay time from the interference pattern. In the field of
ultrafast (femtosecond) lasers, extremely rapid nonlinear processes are used
to generate second-harmonic radiation if and only if two beams coexist in an
appropriate medium at the same time. To measure the duration and shape of
a laser pulse, one beam is alternately delayed and advanced by translation of
a mirror, and the intensity of second-harmonic light is monitored. Based on
our knowledge of the speed of light propagation in air and of the nonlinear op-
tical process, we infer temporal characteristics. In condensed-matter physics
and in nuclear magnetic resonance, many important measurements involve
determinations of the time it takes for a certain population or coherence to
decay. Such measurements frequently rely on a “pump–probe” paradigm, in
which the delay between two pulses is varied, and the size of some resulting
effect (such as a pulse echo) is monitored. From the behavior of the directly
measured observable as a function of the adjustable delay time, one infers the
timescale of the microscopic process. (Even the “directly” adjustable delay
time must, of course, be measured using the sort of indirect technique de-
scribed early.) In these latter cases, as in situations where the particle’s own

1 N. of E.: There are two commonly found but different meanings for “time delay.”
The “delay” described here does not coincide with the the time delay of scattering
theory (cf. Chap. 2). The latter refers to the difference between the passage times
of wave packets with and without interaction.
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motion towards some detector is used to keep track of its time of flight, one
can think of the particle as carrying its own “clock.”

We all have certain intuitions about how such measurements behave, and a
quantum theory of observation ought to be constructed in order to reproduce
so far as possible the expected characteristics of the classical measurements.
One classical assumption is that the quantity being measured is independent
of the details of the measurement technique—note, however, that this is far
from obvious given the range of widely disparate experimental scenarios al-
luded to above. Measuring the time delay between a particle or a pulse peak
entering and leaving some medium may be classically equivalent to measuring
the magnitude of some effect the particle has on the medium or the medium
has on the particle, but the quantities being measured are in fact different
physical observables. There is no guarantee that when the corresponding ob-
servables are measured in the quantum limit, they will exhibit the same nu-
merical equality. In particular, quantum mechanics does not share the same
notion of “trajectory” as classical physics; for this reason, no straightforward
inference may be made about the time spent in a given region based solely
on observations of entry and exit times. The inescapable conclusion is that
while one can try to construct quantum–mechanical descriptions of specific
time measurements, it may not always be possible to construct a unique de-
scription of time measurement which will correctly determine the outcome
of different classes of experiment. Many different quantities with the dimen-
sions of time can be defined theoretically, but in the end, whether or not they
should be considered time measurements can only be determined by compar-
ing them with the types of experimental observation which are in fact used
to operationally define time even at the classical level.

11.2 Arrival-Time Measurements

11.2.1 Techniques for Measuring Arrival Time

In general, experimental determination of arrival time [1] relies on some refer-
ence. For relatively slow processes, the reference may be an accepted external
standard, such as a properly synchronized clock. When this is not feasible,
arrival-time measurements are in fact always determinations of the delay be-
tween some predetermined “trigger” event (particle emission, detection of the
particle prior to its traversal of the region of interest, or detection of some
other particle) and final detection of the particle. Rather than a von Neumann
interaction of the form H = g(t)P ·O, where P is the canonical momentum of
the “pointer” or measuring device, and O is the operator to be measured, the
device here interacts with the particle at two different times. Furthermore, the
coupling Hamiltonian does not directly depend on the arrival time of the par-
ticle; the observable O more usually represents a function of particle position,
e.g., whether or not the particle is in the final region. Time enters instead
through the free evolution of the measuring device.
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If the delay of an electric or optical pulse is to be determined on an oscillo-
scope, the actual measurement is of field amplitude or intensity as a function
of time, and the propagation time is simply inferred from the spatial sep-
aration of points on the scope display. As described earlier, this processing
may also be performed automatically, as in a time-to-amplitude convertor,
in which case the overall time measurement is complete when a specific final
voltage is measured. Naturally, these techniques are limited not only by the
reliability of the pointer’s time evolution, but also by one’s practical ability
to trigger on the “start” and “stop” events. For measurements of very short
times, there is often no detector with sufficient time resolution. One technique
used in such cases is the “streak camera” method, in which the voltage ramp
is not terminated when the particle is detected, but is instead used directly to
alter where an image of the particle is formed. The particle, while in some in-
teraction region, experiences a time-dependent force, and when its position is
subsequently measured, this provides an indirect observation of the magnitude
of this force (and thus the time) at which the particle was in the interaction
region.

These arrival-time measurements generally reflect the “group delay” dφ/dω
of a wavepacket peak,2 although they are often triggered by a feature other
than the peak, for instance, the moment at which the waveform crosses a
preset amplitude, or a prearranged fraction of its peak height. Of course, if
one knows the transmission function T (ω) and its phase φ(ω) ≡ argT (ω), one
can infer the group delay via differentiation. For limited bandwidths and suf-
ficiently well-behaved transmission functions, it is a fair approximation that
the entire pulse travels at the group velocity, but this naturally breaks down
once dispersion comes into play, necessitating a more careful definition of the
quantity to be measured.

Not infrequently, delay measurements are accomplished by directly mea-
suring the phase, and assuming the validity of the stationary-phase approxi-
mation. For instance, one of the first experimental studies of the delay time for
tunneling [2, 3, 4, 5], in the guise of frustrated total internal reflection [6, 7, 8],
was carried out by measuring the phase shift as a function of frequency [9, 10].
The observation that the phase shift varied little as a function of frequency
appeared to confirm the prediction that the delay time in tunneling could
be anomalously small. Similarly, some early work in the microwave regime,
on tunneling through waveguides beyond cutoff, relied on similar techniques
[11]. In the latter experiments, a numerical Fourier transform was performed
to calculate directly what a transmitted waveform would have resembled if
a broadband incident pulse had been used. More recently, measurements of
tunneling time via electron interferometry have also been discussed [12]. It
is important to note that since absolute phase cannot be measured, these
measurements invariably involve comparisons, electronic or interferometric,
between the delayed signal and some reference. At optical frequencies, this

2 This is a “delay” with respect to the passage of the free motion system.
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reference must generally be derived from the same source as the pulse being
studied; at lower frequencies, it can be possible to use independent sources
with well-known absolute frequency.

Interference techniques may also make a more-or-less direct determination
of the group delay, for a broadband source. “White-light” interference fringes
occur for broadband sources, provided that the path-length difference in the
interferometer is not larger than the coherence time of the light. This is be-
cause at zero path-length difference, all frequency components simultaneously
exhibit constructive interference, but once the distance ΔL > c/Δω (where
ΔL is the path-length difference between two arms of the interferometer; c is
the speed of propagation; andΔω is the bandwidth), some components experi-
ence constructive interference while others experience destructive interference.
The envelope of the interference pattern thus maps out the Fourier transform
of the spectrum, which may (in the case of a transform-limited pulse) be equiv-
alent to the temporal profile (or wave function) of the pulse itself. The peak
of the interference pattern occurs when frequencies centered around the peak
frequency all experience the same phase shift, i.e., when d

dω [φ(ω) − ωt] = 0.
Adjusting external delays (i.e., the path-length difference) to find the peak of
the interference pattern after an obstruction has been placed in one arm of
the interferometer therefore allows a direct measurement of the group delay
time δτg ≡ dφ(ω)/dω relative to the transmission of the unobstructed path.
These techniques are sometimes appreciated for their single-particle nature,
although in linear propagation there is no important difference between the
predictions of a classical wave theory and those of quantum electrodynamics.

When the intensity (or probability density) varies on too short a timescale
to be determined by direct measurement, it may still be possible to use
intensity-dependent effects to determine by how much a pulse peak has been
delayed. In laser physics, a common technique for doing this with femtosec-
ond resolution is known as nonlinear autocorrelation or cross-correlation. In
a medium with a nonlinear polarizability PNL = χ(2)E1E2, radiation may be
emitted at the sum of the frequencies of fields E1 and E2 (second-harmonic
generation, in the limit of degenerate frequencies). The intensity of this ra-
diation is proportional to the instantaneous product of the two intensities
|E1|2 and |E2|2, and if in a pulsed experiment, the total energy radiated into
the second harmonic is measured, this provides a measure of the intensity–
intensity overlap

∫
dt|E1(t)|2|E2(t)|2 of the two fields. If one pulse is delayed,

it is possible to adjust the path length of the other pulse until this overlap is
once more maximized, thus providing an indirect measure of the arrival time
relative to the time of appearance of the unobstructed pulse. This technique
was used by Spielmann et al. to study the time delay for femtosecond laser
pulses to traverse an optical tunneling barrier [13].

Higher-order correlation functions (as in intensity–intensity, or Hanbury–
Brown–Twiss, interferometry [14]) may also be measured interferometrically.
For instance, there is a nonlinear optical effect discovered by Hong, Ou, and
Mandel [15] which can be thought of roughly as a time-reversed variant of the
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nonlinear autocorrelation technique. This effect relies on spontaneous para-
metric downconversion, a process in which a crystal with a χ(2) nonlinearity
absorbs a pump photon at ω0 and emits in its place a pair of photons at fre-
quencies spread symmetrically about ω0/2, energy conservation being assured
by the anticorrelation of the frequencies of the two photons. The photons are
emitted simultaneously to within their coherence lengths, which are typically
on the order of 10 or 20 fs. If the two photon wave packets meet simultaneously
at opposite sides of a 50/50 beam splitter, a quantum interference effect re-
lated to Bose statistics causes them to exit the beam splitter along the same
(randomly chosen) direction; detectors placed at the two exit ports of the
beam splitter will never register photons simultaneously. On the other hand,
if the two photons arrive at different times, each will make an independent
choice at the beam splitter, leading to coincidence counts in half of the cases.
Thus by changing the path length of one photon’s trip until the coincidence
rate is minimized, one can ensure that the photons are meeting simultane-
ously at the beam splitter [15, 16, 17, 18]. If an obstruction such as a tunnel
barrier is placed in one arm of the two-photon interferometer, the coincidence
dip recorded as a function of external path length will shift, and this shift is
a measure of the delay time for traversing the barrier. It is interesting to note
that these experiments are typically performed with a continuous-wave argon
laser as the pump, so the state of the light is in fact stationary in time. It
is only the correlations between the photons which have the very fast (15 fs)
time dependence. Once a photon is detected, it is possible to say that its twin
has “collapsed” into a 15-fs wave packet, but prior to that time, the system
is better seen as a superposition of 15-fs wavepackets with centers at every
possible position. Nevertheless, these measurements (performed with detec-
tors thousands of times too slow to directly resolve femtosecond-scale delays)
reproduce the expected group delay, measuring the extra time taken by any
of these hypothetical wave packets to traverse the obstruction.

11.2.2 Superluminal Arrival Times

The question of operational definitions of experimentally accessible times
gained a sense of urgency due to the controversy over the process of tun-
neling alluded to above. Despite its absence from the overwhelming majority
of textbook descriptions of tunneling (one early exception being [19]), the
tunneling-time problem has a long and illustrious history. At the heart of the
problem is the fact that the classical expression for the kinetic energy of a par-
ticle inside a tunnel barrier is negative, so that a semiclassical estimate of its
velocity becomes imaginary.3 This makes it impossible to make the näıve first
approximation that the duration of a tunneling event is the barrier width di-
vided by the velocity

√
2E/m. Already, we see the first hint that the classical

3 Such a local definition of kinetic energy becomes problematic in quantum
mechanics; see for instance [20, 21, 22].
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equivalence of a broad range of definitions for traversal time cannot persist,
for this one yields an imaginary number, while most measurement techniques
will be certain to yield positive values.

Within a few years of the first predictions of tunneling, discussions ap-
peared of the time spent by a particle in a “forbidden” region, and of the
use of the stationary phase approximation to calculate properties of tunneling
wave packets [23, 2]. Wigner [3] and Eisenbud [24] studied the relationship
between scattering phase shifts and the delay time, making explicit the con-
nection between these quantities and the principle of causality. As discussed
in Sect. 2.4.4, Wigner observed that “the ‘retardation’ cannot assume arbi-
trarily large negative values, in classical theory it could not be less than −2a,”
where a is the radius of the scattering potential; in other words, a classical
particle cannot leave the scattering center before it arrives. He notes that “It
will be seen that the wave nature of the particles does permit some infringe-
ment of [this inequality].” It is primarily with this very infringement that
we are concerned here. Does wave mechanics truly allow particles to exit a
barrier before they enter it, and in particular, do such effects violate relativis-
tic causality? One could reasonably suspect that the nonrelativistic nature
of the Schrödinger equation is at fault here, but more careful analyses using
the Dirac equation show that such superluminal transmission (which occurs
in cases where all relevant energy scales are far less than the electron rest
mass in the first place) persists [25]. The conflict is made even more clear
by turning to optical analogs of tunneling, as the same problems arise with
Maxwell’s (fully relativistic) equations, and since one begins in the relativistic
regime, it is relatively easy to achieve conditions under which the group delay
is predicted to be superluminal.

Of course, superluminal and even negative group velocities were already
known to occur in electromagnetism, and had been reconciled with causal-
ity by Sommerfeld and Brillouin [26]. Their work showed that no real signal
could propagate faster than the vacuum velocity of light c in any medium
obeying the Kramers–Kronig relations, even in regions of anomalous disper-
sion. In these regions, the absorption and the strong frequency dispersion
cause the stationary-phase approximation to break down, as an incident pulse
is distorted beyond recognition and no single transmitted peak may be ob-
served. Conventional wisdom has it that such a breakdown occurs in every
limit where the group velocity exceeds c. Nevertheless, as early as 1970, Gar-
rett and McCumber showed theoretically that for short enough interaction
lengths, absorbing media could indeed transmit undistorted (but attenuated)
Gaussian pulses at superluminal, infinite, or even negative group velocities
[27]. This prediction was experimentally verified using the technique of non-
linear autocorrelation by Chu and Wong [28]. More recently, anomalous op-
tical delay times as large as 62 ns (large enough to be observed by direct
photodetection and storage of an oscilloscope trace) were observed by Wang,
Kuzmich, and Dogariu [29] in conditions of near transparency, following a
prediction by Chiao and others [30, 31]. This work has been followed up by
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several groups [32, 33], and various attempts have been made to distinguish
the speed of information from that of a pulse peak, confirming that the for-
mer is indeed causal [32]. With the advent of negative index “metamaterials,”
superluminal propagation has also been studied in microwave transmission-
like measurements [34]. In parallel, some novel proposals for unattenuated
superluminal reflection have been made [35, 36], although subtleties remain,
related to the proper treatment of the propagation of pulses in two or three
dimensions [37]. An excellent recent review on anomalous velocities in optical
propagation is [38].

Even before this work on anomalous dispersion, the question of superlu-
minal wave-packet transmission in tunneling was put on a firmer footing by
[39]. Hartman was not satisfied by MacColl’s 1932 observation that there is
“no appreciable” delay in tunneling, and he was concerned about the effects
of preferential transmission of higher energy components in a wave packet.
In a rigorous treatment of the tunneling of wave packets through a rectan-
gular barrier, he indeed found that for very thick barriers, such distortion
occurred that no peak could be identified which might appear at the group
delay time. For thin barriers, his results were in agreement with the stationary
phase prediction, but there was no conflict with causality. Roughly speaking,
the prediction is that for thicknesses smaller than one decay length of the
evanescent wave (d < 1/κ), a transmitted particle of energy much less than
the barrier height (E � V0; k � k0) will appear to have traveled at its initial
velocity of �k/m. This delay is related to the fact that phase is accumulated as
the evanescent (e−κx) and antievanescent (e+κx) waves change in relative size,
as the two have different (but constant) phases. For thicker barriers (κd� 1),
there is no phase change across most of the barrier, since the wave function is
dominated by real exponential decay. The so called “phase time” (an unfor-
tunate term, as it is related to the group velocity and not the phase velocity,
but one which has become conventional and will therefore be adopted for the
sake of this book) is defined as the group delay plus the free motion term,
and therefore saturates at the finite value 2m/�kκ, the time it would take the
free incident particle to traverse two exponential decay lengths 1/κ. Hartman
confirmed that for intermediate barrier thicknesses, larger than 1/κ but small
enough that the pulse was not significantly distorted, this saturation effect
did indeed occur. As the distance traversed continues to grow, but the time
required to traverse it remains roughly constant, it is clear that one eventually
reaches a regime where the apparent propagation speed exceeds c.

The quantum–mechanical tunneling problem is mathematically equivalent
to a number of situations in electromagnetism, including frustrated total in-
ternal reflection, transmission through a waveguide beyond cutoff, and trans-
mission through a “photonic bandgap” (in one dimension, also known more
prosaically as a dielectric mirror). Most examples of massive-particle tunnel-
ing occur on time and distance scales which have made direct arrival-time
measurements infeasible, and so much of the work on tunneling times has
taken place in the microwave and optical domains. Measurements of phase
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shifts [10, 9, 11], quantum interferograms [40], pulse peaks and rising edges
[41, 42], and nonlinear autocorrelation [13] all agree with one another and with
the phase time prediction, despite the superluminal nature of this quantity.
Similar results have since been obtained for other surprising examples of prop-
agation, in diffraction [43, 44], Bessel beams [45], and anomalous dispersion
in gain media [29].

While this state of affairs may seem surprising, it has been pointed out,
notably by Büttiker and Landauer, that no physical law guarantees that an
incoming peak turns into an outgoing peak [46]. Certainly there need not
be any causal connection between an incoming peak and an outgoing one,
as demonstrated in a striking electronics experiment [47]. As explained in [8]
and references therein, no information can be sent faster than light using these
effects. To sum the arguments up briefly, the wave exiting the barrier can be
expressed by integrating a perfectly causal response function:

Ψ(x = d, t) =
∫ ∞

0

dτf(τ)Ψ(x = 0, t− d/c− τ) . (11.1)

The behavior of Ψ(x = 0) at times t0 > t − d/c has no impact whatever
on the behavior of Ψ(x = d, t). Remarkably, the effect of a tunnel barrier is
to perform an extrapolation into the future (a Taylor expansion [48, 49]) by
combining paths with slightly different delays 180◦ out of phase with one an-
other [50, 51]. Whether for a Gaussian wave packet or a piece by Mozart, the
outcome is a convincing reproduction of the incident wave form; some work-
ers therefore argue that signal propagation for such frequency-band-limited
waves indeed occurs faster than c [52]. Other workers take the more cautious
view that information velocity should refer to the arrival of “new” informa-
tion, and have experimented with modified pulses containing “abrupt” signals
[32], demonstrating experimentally that when these changes are sufficiently
sharp, they indeed propagate causally. However one chooses to think about
superluminal group delays, it is clear that the phase time is an accurate pre-
diction for the type of measurement it is designed to describe; it does indeed
indicate the time delay for a given wave or probability distribution to reach
its maximum value, and thus the most likely delay time observable via direct
detection of individual particles. The various measurement schemes which are
sensitive to this property all agree in the quantum regime as they do in the
classical one. In the cases of superluminal transmission without attenuation
[30, 31, 29, 32, 33], it is interesting to ask about the energy velocity, which
by standard definitions also appears to exceed c. Several interesting attempts
have been made [53, 54, 55] to clarify this situation by devising a more com-
plete definition of energy velocity. Some recent reviews [56, 57, 58] offer a
variety of perspectives on superluminal tunneling and related issues. The re-
maining question is whether or not this delay is the only reasonable way of
defining the traversal time for a tunneling particle.



342 A. M. Steinberg

11.3 Dwell or Interaction Time Measurements

11.3.1 Theoretical Proposals

Büttiker and Landauer were prominent among those arguing that in cases
where the delay time was anomalously small, it must not reflect the actual
duration for which the particle was in the region of interest. Of course, there is
nothing special about the particular barrier for which the phase time becomes
smaller than d/c, or the one for which it becomes negative; if in these cases, the
“dwell time” spent by the particle in the region differs from the measured time
of flight inferred from wave-packet peaks, then it is reasonable to suppose that
these times are in general different quantities. It so happens in the classical
regime that the time spent by a particle in a given region is equal to the
difference between its exit and entrance times; quantum mechanically, this
relation is true only as an approximation valid in certain parameter ranges,
and it must in fact be recognized that at least two different physical quantities
have been given the same name because of the accuracy of this approximation
in our familiar experience.

The “dwell” or “sojourn” time τd seems the most natural answer to the
question “how much time does a particle spend in the barrier region?” It can
be defined alternately for the time-dependent or the time-independent case. In
the former, its natural statement is as the time integral of the instantaneous
probability that the particle is inside the barrier (assumed to extend from
−d/2 to d/2):

τd (time-dependent) ≡
∫ ∞

−∞
dt

∫ d/2

−d/2
dx|Ψ(x, t)|2 . (11.2)

In the latter case, it is simply the probability density within the barrier,
divided by the incident flux JI :

τd (time-independent) ≡ 1
JI

∫ d/2

−d/2
dx|Ψ(x)|2 . (11.3)

In the limit of a monochromatic wave packet, these two formulas yield the
same result, although for packets of finite extent, corrections may be important
[59]. A variety of expressions for the dwell time is discussed in Chap. 2. The
importance of definitions in the quantum regime cannot be overexaggerated.
In the classical limit, τd (the time spent within the potential step) and the
phase time τPh (the time between arrival at the leading edge of the step
and departure from the trailing edge) are of course identical, and equal to
d/v = md/�k, as can easily be verified analytically. There is only one sensible
quantity to term the “traversal time” in this case, but this fact does not follow
directly from the structure of the two quantum–mechanical definitions.

The dwell time may appear unsatisfactory as a candidate for a traversal
time for several reasons. Foremost, it is a characteristic of an entire wave
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function, comprising both transmitted and reflected portions. One might well
expect that transmitted and reflected particles could spend differing amounts
of time in the barrier. (Without a doubt, one would expect them to spend
different amounts of time on the far side of the barrier—a finite amount
for the transmitted particles and none for the reflected ones—whereas the
formulations of (11.2) and (11.3) leave no room to introduce this distinction.)
Its definition is so natural that many researchers have argued that it must at
least reflect the weighted average of transmission and reflection times, τd =
|T |2τT + |R|2τR (with T and R the transmission and reflection amplitudes,
respectively), but even this assertion has been hotly disputed [60, 4, 61, 62,
63, 64, 5].

The second seeming problem with the dwell time is one it shares with
the phase time. It is not guaranteed to be greater than the barrier thickness
upon the speed of light, d/c. In fact, in the low-energy limit k → 0 of a
rectangular-barrier tunneling problem with barrier height V0 ≡ �

2k2
0/2m, the

wave is almost entirely reflected by the first interface, and |Ψ |2 is negligible in
the barrier, leading τd to vanish as 2mk/�κk2

0.
Once more, one is led to approach the problem of defining a time by con-

sidering potential experimental schemes for its measurement. What do we
mean when we ask about the time a particle spent in a region, as distinct
from observations about its most likely appearance at the far side? We are
naturally considering some hypothetical interaction between the particle and
the barrier, or some other form of time-dependent interaction. In the 1982
paper which is widely viewed as having rekindled the tunneling-time fire,
Büttiker and Landauer proposed a Gedanken experiment which would allow
one to infer the duration of the tunneling process. Consider a particle tunnel-
ing through a rectangular barrier. Now modulate the height of the barrier by
a small amount, at some relatively low-frequency Ω. Clearly, the transmission
is lowest when the barrier is highest, and vice versa. But now imagine that Ω
becomes greater and greater, until Ω � 1/τt, that is, until the barrier goes
through more than one oscillation during the “duration” τt of the tunneling
event. Naturally, the modulation of the transmitted wave will be washed out.
Büttiker and Landauer therefore solved the problem of the oscillating bar-
rier, and looked for this critical frequency Ωc. They then postulated that the
traversal time was τBL ≡ 1/Ωc. When the calculation was performed in the
opaque limit (κd� 1), they found the following result:

τBL = md/�κ . (11.4)

This is a striking result. Recalling that the local wavevector inside the barrier
is iκ, we see that this is exactly the time we would expect from a semiclassi-
cal or WKB (Wentzel-Kramers-Brillouin) approach (md/

√
2mE)—aside from

the fact that we here find a real number, despite the imaginary value of the
wave vector. Due to the similarity of the formulas, nevertheless, the Büttiker–
Landauer time is also frequently referred to as the “semiclassical time.” (Far
above the barrier, both τPh and τd in fact approach the semiclassical time
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τs ≡ md/�|k|.) Since this time is proportional to d, it rarely becomes smaller
than d/c; in fact, it would only do so for m/�κ > c, which is the relativistic
limit, where the Schrödinger equation should not be expected to be valid. (In
reality, for geometries more complicated than the rectangular barrier, it has
been noted that this time may vanish identically, leading once more to causal-
ity problems [65, 7, 40]; in addition, [66] have pointed out examples in which
no direct, general relation exists between the critical frequency Ωc and the
duration of the tunneling process, thus casting doubt on the interpretation of
(11.4) as the tunneling time.)

While above the barrier, the semiclassical time closely resembles the phase
time (missing only the oscillations due to multiple reflections at the barrier
edges, which become insignificant in the WKB limit), but it looks nothing at
all like τPh below the barrier, diverging when E = V0 (where V0 ≡ �

2k2
0/2m is

the height of the barrier) and falling in the opaque limit (κd� 1) to md/�k0

as opposed to diverging like τPh → 2m/�kk0. The phase time diverges for
k → 0, but is independent of d; the Büttiker–Landauer time is well-behaved
as k → 0, and is proportional to d.

Büttiker went on to consider another “clock,” to see if different types of
perturbations would bring to light the same timescale. Expanding on work
due to [67] and [68], he considered an electron tunneling through a barrier
to which a small magnetic field B = B0ẑ is confined. Suppose the electron’s
spin is initially pointing along x̂. The magnetic field causes it to precess in
the x–y plane at the Larmor frequency ωL = 2μBB0/�, where μB is the Bohr
magneton. If one measures the polarization of the transmitted electron, one
will find it to have precessed through some angle θy, and nothing could be
more natural than to ascribe this to precession at ωL for the duration τy of
the tunneling event, leading to the “Larmor time” τy ≡ θy/ωL. This internal
clock is certainly closely related to many standard experimental measure-
ment techniques, and is of course reminiscent of nuclear magnetic resonance
studies of spin precession and associated decay times. It can be shown that
this time τy = −�

∂
∂V0

arg(T ), and is thus closely related to the phase time
τPh = dm/�k + �

∂
∂E arg(T ). The two times show superluminal behavior at

low energies.
Büttiker’s insight was that this early expression for the Larmor time made

the implicit assumption that by taking the B0 → 0 limit, one could neglect
the tendency of the electron to align itself with respect to the magnetic field.
In reality, due to the interaction Hamiltonian Hint = +2μBB0Sz, a spin-
up electron sees an effective potential with a higher barrier than that seen
by a spin-down electron, and therefore has a lower transmission probabil-
ity. As the x̂-polarized electrons are equal superpositions of Sz = ±1/2, this
preferential transmission will tend to rotate the polarization out of the x–y
plane towards the −z-axis, so that the transmitted electron beam is slightly
spin-polarized antiparallel to the applied B field. Büttiker showed that both
this out-of-plane rotation and the in-plane precession were first order in B0,
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and furthermore, that the former dominated the latter in the opaque limit.
Defining a second Larmor time related to the polar rotation according to
τz ≡ θz/ωL = −�

∂
∂V0

ln|T |, he found this timescale to reproduce the md/�κ
behavior he and Landauer had already calculated by considering the mod-
ulated barrier. Suggesting that the true interaction time should take into
account the full three-dimensional rotation of the electron’s spin, he proposed
that the interaction time was τx ≡

√
τ2
y + τ2

z . This time agrees with the

oscillating-barrier result τBL in both the low- and high-energy limits.
A fair number of other methods for defining the tunneling time have

been proposed on purely theoretical grounds, without direct connection to
any specific experimental scheme. For example, a Feynman-path approach in
which the durations of all relevant Feynman paths were averaged with the
weighting factor exp{iS[x(t)]/�} yielded the “complex time” τc = τy − iτz
[60, 62, 69, 70, 71, 64]. It is easy to observe that the magnitude of this time is
Büttiker’s Larmor time, while its real and imaginary parts are (for the rect-
angular barrier) the dwell time and minus the semiclassical time, respectively.
(An earlier approach [72, 73] yielded a similar complex time, whose real part
was the group delay, rather than the dwell time.) Nevertheless, it is only by
comparison with the outcomes of actual or potential measurements that one
can judge the suitability of a theoretical proposal for the tunneling time.

11.3.2 Some Experimental Examples

The interest in tunneling times was largely driven by the condensed matter
community, and some effort went into attempting to carry out time mea-
surements in electronic systems. As has already been observed, the appropri-
ate techniques did not exist for measuring electronic wave-packet times, but
it was possible to measure various types of interaction times for tunneling
electrons [74].

While it did not prove feasible to carry out directly either the Larmor or
the Büttiker–Landauer proposal, Guéret et al. measured a related effect and
interpreted it in terms of barrier traversal time. They studied tunneling of elec-
trons through GaAs/GaAlAs heterostructures. Although the spin precession
of the tunneling electrons could not be studied directly, they argued that an
applied magnetic field also leads to a Lorentz force, deflecting the electron as
it tunnels, thereby increasing the distance it needs to travel, and consequently
exponentially suppressing the tunneling. By performing a series of static mea-
surements on the tunneling current as a function of applied magnetic field,
they were able to infer the energy dependence of the tunneling current, and
hence Büttiker’s τz. They found good agreement with the theoretical predic-
tions, and some took this as support for the semiclassical time. Of course, this
measurement has a similar status to the time-independent determination of a
series of phase shifts for the sake of calculating the group delay by numerical
differentiation; it does not test the validity of the definition, and makes no
direct measurement of an interaction time.
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An ingenious experiment was carried out by Esteve et al. [75] in rough
analogy with the Büttiker–Landauer proposal. In this experiment, a current-
biased Josephson junction undergoes macroscopic quantum tunneling between
different local minima of the Josephson phase. When the system (not an in-
dividual particle!) tunnels, a voltage is produced. By terminating the circuit
at a resistor following a delay line, the researchers argued that reflections
would be introduced, and might alter the tunneling rate. If, however, the de-
lay line was sufficiently long, the reflections would arrive after the tunneling
event was complete. They therefore studied the mean rate of tunneling as a
function of delay line length, and determined a crossover time beyond which
the resistor appeared to have no further effect on the tunneling decay. Once
more, real measurements of time often involve not the direct determination of
some observable, but rather careful analysis of a large set of time-independent
measurements to estimate a parameter on which the overall system behavior
depends. And as in the case of the magnetic deflection of tunneling electrons,
such “interaction times” seemed to be in good agreement with the semiclas-
sical times, rather than the phase time.

More recently, some optical experiments have succeeded in measuring
quantities related to the Larmor or semiclassical times, as well as pulse–peak
arrival times. Deutsch and Golub [76] performed an experiment to measure
the Larmor tunneling time for photons. Their experiment utilizes an analogy
between the spin of an electron and the spin of a photon, whose polarization
state can be described by a point on the Poincaré sphere given by the Stokes
parameters S. The equation of motion for the Stokes parameters for a beam
of light propagating along the x-axis through a medium with an anisotropic
refractive index is given by dS/dx = Ω×S, where Ω is the precession rate of
the tip of the S vector on the Poincaré sphere arising from the anisotropic in-
dex of refraction. This equation is formally identical to the one describing the
precession of the tip of the electron spin vector σ on the Bloch sphere arising
from an applied magnetic field dσ/dt = ΩL×σ, when the optical precession
rate Ω is identified (apart from a proportionality constant) with the rate of
Larmor precession ΩL. This analogy between electron and photon spin pre-
cession led Deutsch and Golub to suggest an optical implementation of the
Larmor clock measurement of the tunneling time of Baz’ and Rybachenko
(latter corrected and generalized by Büttiker). The basic idea is to replace
electrons with photons, and to replace a uniform magnetic field confined to
the electron tunnel barrier region with a uniform birefringent medium con-
fined to the corresponding optical tunnel barrier. Thus instead of utilizing the
precession of the electron spin as an internal clock to measure the Larmor
tunneling time, they utilized the precession of the S vector of the photon as
an internal clock. In their experiment, they used frustrated total internal re-
flection between two glass prisms as the tunnel barrier. The gap between the
prisms, which served as the tunnel barrier, was filled with a birefringent fluid
(a liquid crystal). They then measured the Stokes parameters of the trans-
mitted light. In this way, they too confirmed the Larmor time predictions.
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In 1997, Balcou and Dutriaux [77] measured two quantities with dimen-
sions of a time in a single experiment on frustrated total internal reflection. In
this process, the angle of incidence plays the role of incident energy; and angles
closer to the critical angle are transmitted with higher probability than angles
further beyond critical. Since any bounded beam incident on the barrier has
a range of incident angles, it is found that the transmitted beam is deflected
relative to the incident one, in the same way that a tunneling electron will
on average have higher energy than the typical incident electron. By measur-
ing this angle, the researchers concluded, one can determine the Larmor time
(specifically, Büttiker’s τz). Simultaneously, the different angular components
pick up different phase shifts, which manifests itself as a transverse shift of
the center of the transmitted beam (as in the Goos–Hänchen effect [78]). This
shift was interpreted as an indirect measure of the actual time of flight, and
is clearly mathematically similar to both τg and τy . Here, then, was a clear
example where no unique definition of the tunneling time was possible, for
two simultaneous measurements on a system yielded two results, each in good
agreement with the appropriate theory. The ambiguity is not a theoretical
problem, but merely a recognition that there is a lack of defined terms. We
cannot, as in the classical regime, simply measure “the” time of a process; we
must decide precisely what measurement we are interested with, and use the
appropriate theoretical and experimental tools for that measurement.

11.4 Weak Measurements

11.4.1 Interpretational Aspects

A new light can be cast on dwell-time measurements by using the “weak mea-
surement” formalism of Aharonov et al. [79, 80]; see Chap. 13. In quantum
mechanics, it is straightforward to define an operator ΘB which is 1 if the
particle is in the barrier region and 0 otherwise. Such a projection operator
is Hermitian, and may correspond to a physical observable. Its expectation
value simply measures the integrated probability density over the region of
interest—it is this expectation value divided by the incident flux which yields
the dwell time, as defined earlier. The central problem, once more, is the ab-
sence of well-defined histories (or trajectories) in standard quantum theory: as
remarked above, the dwell time measures a property of a wave function with
both transmitted and reflected portions, and does not display a unique decom-
position into portions corresponding to these individual scattering channels
(see Chap. 2 and [81]).

Some workers calculate the expectation value not for the initial state but
rather for the final state [82, 83, 84]. This answers questions about trans-
mitted particles known to be incident from the left no better than does the
usual dwell time; instead of discarding information about late times it dis-
cards information about early times. Approaches relying on projector algebra
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in general have been analyzed in [81] and [85]. Other related approaches follow
phase space trajectories [82], Bohm trajectories [86, 87, 88, 89, 90, 91, 92], or
Feynman paths [60, 62, 71, 64, 93, 69, 70]. No consensus has been reached as
to the validity and the relationship of these various approaches. Once more,
in order to choose among various theoretical definitions, we must return to
considering the type of measurement actually contemplated.

Weak measurement theory does precisely this, by showing one how to an-
alyze “conditional measurements” in quantum mechanics: that is, how to pre-
dict outcomes of measurements not for entire ensembles, but for subensembles
determined both by state preparation and by a subsequent postselection. In
the case which concerns us, the state is prepared with a particle incident from
the left, and selected to have a particle emerging on the right at late times. Due
to the time reversibility of the wave equation, results of intervening measure-
ments depend both on the initial and the final state. This formalism relies
only on standard quantum theory, and yields a result which is completely
general for any measurement arising from a von Neumann-style measurement
interaction, in the limit where the interaction strength is kept low enough to
avoid irreversibly disturbing the quantum evolution. This low strength implies
great measurement uncertainty on any individual shot, but an average may
be calculated for a large number of data runs. We have shown [94, 95] how
to apply this formalism to tunneling, and the time we find is identical to the
complex time of Sokolovski, Baskin, and Connor, τc = τy− iτz. But thanks to
the “weak measurement” formalism, it becomes clear what the physical sig-
nificance of the real and imaginary parts is: the real part (the in-plane Larmor
time) quantifies how strongly the tunneling particle will affect a clock with
which it interacts; this is the portion which corresponds to a classical measure-
ment outcome. The imaginary part, on the other hand, describes the amount
of back action the measuring apparatus will exert on the particle (the sensi-
tivity of the tunneling probability to small perturbations, in other words, as
in Büttiker’s out-of-plane Larmor rotation). While the former effect remains
constant as the measurement is made weaker and weaker, the back action
may be made arbitrarily small by resorting to extremely “gentle” (and con-
sequently uncertain) measurements. Among other attractive properties, these
conditional times automatically satisfy the relationship τd = |T |2τT + |R|2τR.

The generality of the times obtained in this way suggests that it may be
possible to apply them to a broad variety of problems, at least approximately,
even in cases where exact solution would be intractable. It has already been
shown that not only are the Larmor times a clear subset of these “conditional
times,” but that the counterintuitive effects of absorption on light propagat-
ing through layered media can be qualitatively understood by application of
these complex times [95]. The equality of the Büttiker–Landauer time and
−Imτc makes sense given that the oscillating barrier approach in fact stud-
ies the sensitivity to perturbations in the barrier height. The direct connec-
tion to measurement outcomes lifts the ambiguity present in other “projector
approaches” and the Feynman-path formalism. Finally, it is possible using
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these methods to calculate conditional probability distributions for transmit-
ted or reflected particle positions as a function of time, and directly inves-
tigate questions about whether tunneling particles spend significant lengths
of time in the center of the barrier, whether only the leading edge of the
wave is transmitted, etc. Since these probability distributions may have large
values on both sides of the barrier simultaneously, and independent “weak
measurements” can be shown to add linearly (unlike “strong” measurements
of noncommuting observables), it is interesting to speculate about whether a
statistical demonstration that during tunneling, a particle is “in two places at
once” might be possible. Work continues on all of these issues. The connection
of superluminality, weak values, and “superoscillations” has been followed up
in [96, 97, 98]. Some work has also been carried out to analyze how to take a
step beyond these expectation-value-like tunneling times and calculate higher
moments, or entire distributions [99, 100, 101].

11.4.2 Potential Experimental Tests

We believe that in order to study these quantum subensembles, laser-cooled
atoms offer a unique tool. They can routinely be cooled into the quantum
regime, where their de Broglie wavelengths are on the order of microns, and
their time evolution takes place in the millisecond regime. They can be directly
imaged, and if they are made to impinge on a laser-induced tunnel barrier,
transmitted and reflected clouds should be spatially resolvable. With various
internal degrees of freedom (hyperfine structure as well as Zeeman sublevels),
they offer a great deal of flexibility for studying the various interaction times
and nonlocality-related issues. In addition, extensions to dissipative interac-
tions and questions related to irreversible measurements and the quantum–
classical boundary are easy to envision [102].

We are working on an atom–optics experiment which will let us directly
test these questions. We start with a Bose condensate of Rubidium-87 atoms,
at a temperature of about 200 nK. We use a tightly focussed beam of in-
tense light detuned far to the blue of the D2 line to create a dipole-force
potential for the atoms [103, 104, 105]. We can readily create repulsive po-
tentials with maxima much higher than the energy of the Rubidium atoms.
Acousto-optical modulation of the beam allows us to shape these potentials
with nearly total freedom, such that we can have the atoms impinge on a thin
plane of repulsive light, whose width would be on the order of the cold atoms’
de Broglie wavelength. This is because the beam may be focussed down to a
spot several microns across. This focus may be rapidly displaced [106, 107] by
using acousto-optic modulators. As the atomic motion is in the millimeter per
second range, the atoms respond only to the time-averaged intensity, which
can be arranged to have a nearly arbitrary profile.

Ultracold atoms thus provide a unique system in which to study tunnel-
ing. By using optical pumping, stimulated Raman transitions, and other such
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probes, we will be able to go beyond simple wave packet studies to investi-
gate the interactions of tunneling atoms while in the forbidden region itself
[108, 109]. This will allow us to study the direct analog of the Larmor times,
along with extensions to particles of higher spin. It should also provide an
arena in which to study the effect of dissipation and decoherence on quantum
measurement, as well as to make measurements at two locations at the same
time in order to further investigate the strange features of quantum tunneling
[110, 111, 100, 101]. In this way, we hope to shed new light on this fascinating
phenomenon, but also on nonlocality in quantum mechanics more generally.

11.5 Conclusion

As we have seen several times now, the problem of time measurement in quan-
tum mechanics is difficult primarily because time measurement is a subtle and
indirect business even in the classical world. The fact that some of our famil-
iar intuitions about these indirect measurements should break down in the
quantum limit ought not surprise us terribly. In particular, it is observed time
and again that tunneling (for instance) may be described by two quite differ-
ent sorts of timescale. One is related to the variation of transmission phase
shifts—common examples are the phase time τPh and the τy Larmor time—
while the other is related to the variation of transmission probabilities—the
Larmor time τz is the standard example of this sort of “interaction time.”
While certain measurements which appear reliable at the classical level agree
with τz in the tunneling regime, other equally valid classical measurements
tend to reproduce the phase time. Perhaps more interesting is to take the
correspondence-principle limit in the other direction. If a Larmor time mea-
surement is carried out on a particle undergoing classical propagation, what
do we expect? The spin precesses as usual, and it will be found that τg = τy
is the unique timescale for traversal. In this limit, transmission probability has
no dependence on energy, and therefore τz vanishes. This definition of the “in-
teraction time” measures an effect which does not exist at the classical level
(related not to the magnitude of the particle’s influence on some hypothetical
measuring device, but rather to the sensitivity of the particle to back action
from the measurement apparatus). It is therefore difficult to argue that such
a definition is the appropriate extension of classical concepts to the quantum
regime.

Certainly, nothing can be more clear than that there are various useful def-
initions of timescales for quantum events, which generally seem to be divisible
into the two rough categories described above. We should not be hampered
by the existence of only a single classical timescale to search perpetually for
a single “tunneling time” in quantum mechanics. Instead, we must accept
that theory can only answer well-posed questions about specific experimen-
tal arrangements, and that at least two different timescales (or the real and
imaginary parts of a single complex time) are necessary to fully describe the
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behavior of a tunneling particle. This does not mean that we are forced to
abandon any program of seeking universality. There are already strong hints
that this complex time is indeed universal, in that quite a few very differ-
ent experimental schemes for studying traversal times appear to yield either
its real or imaginary part, depending simply on which aspect of tunneling
is probed. As always, the definition of appropriate observables will have to
continue to be informed by the interplay between theory and experiment.
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12.1 An Overview of Theoretical Models of Tunneling
in the Electromagnetic Framework

The tunneling process represents one of the most nonclassical predictions in
quantum mechanics. Within this process, one of the questions most debated
is that of the “traversal time,” that is, the time spent during the passage
through a barrier. The question of how much time tunneling takes is certainly
not new, but it is one that has not yet been resolved.

As is known, considerable difficulties are encountered when performing a
direct measurement of the tunneling time due to the very short time involved:
its scale is given by the ratio between a few wavelengths of the wave function
and a velocity comparable with that of the light in vacuum. With a solid-state
device the tunneling time involved may be, typically, of the order of femtosec-
onds. In Josephson junctions, this time seems to increase up to the order of
102 ps. However, only a few experimental results are currently available; fur-
ther investigations would, therefore, be worthwhile, also in connection with
novel theoretical aspects.

Tunneling also occurs in optics, so it is possible to establish a close anal-
ogy between particle motion and electromagnetic wave propagation, which
can be of help in understanding this intriguing problem. The implications
of this topic, which are ultimately related to the questions connected with
particle–wave dualism, have recently been connected also to relativistic prob-
lems, owing to the possibility of observing superluminal motions. In other
words, the question of whether quantum tunneling is faster than light has
now been brought to the fore [1, 2, 3].

For optical tunneling in the visible region, the magnitude of the tunneling
time is still of the order of femtoseconds, but a decisive increase in this time
can be obtained by increasing the wavelength up to microwaves. In this way,
the timescale is magnified up to nanoseconds, and measurements can easily
be performed [4].
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An experimental device suitable for simulating quantum tunneling con-
sists of an undersized waveguide in which evanescent modes take place for
frequencies below the cutoff one (see Sect. 12.2). By analogy with the quan-
tum tunneling of a particle through a barrier, the waveguide can be regarded
as a one-dimensional barrier for electromagnetic waves.

The analogy, however, goes beyond what is outlined here, since quantum
tunneling and electromagnetic waves are described by closely related wave
equations. In fact, the time-independent Schrödinger equation for the motion
of a particle of energyE in a potential V0 is formally identical to the Helmholtz
equation for the propagation of a scalar field (electric or magnetic component
of the wave). The only difference lies in the dispersive relation, which reflects
the different time dependence in the Schrödinger equation with respect to the
d’Alembert equation. Once the dispersion relations are properly taken into
account, the results of quantum mechanics can be adopted for waveguides
provided that the substitution (�/m) → (c2/2πν) is made (m is the mass
of the particle, ν is the frequency of the wave, and c is the light velocity).
Even if the two wave equations describe the evolution of two quite different
quantities—the quantum wave function and the electromagnetic field—this
does not prevent a test being made of quantum-mechanical models, which are
based on the evolution of wave packets, provided that the above substitution
is made. There is, however, a limitation in this analogy since in contrast to
tunneling particle, an electromagnetic pulse consists of many photons and can
be probed in a noninvasive way.

The fact that the results of such a simulation are best described by
quantum-mechanical models, suitably translated into a classical electromag-
netic framework, constitutes the proof that quantum tunneling can actually
be simulated by these kinds of experiments. A model we are concerned with
is the phase time, that is, the group delay as calculated by the stationary
phase method. The predictions of this procedure can, within certain limits,
be paradoxically small, implying a barrier-traversal velocity greater than the
speed of light c (Hartman effect)[5]. However, by working in the time do-
main, that is, by measuring directly the delay time, it is rather difficult to
perform measurements sufficiently below the cutoff frequency because of the
severe limitations caused by the attenuation of the signal. Thus, with this
kind of device it was not possible to obtain clear experimental evidence of
the existence of superluminal behavior. On the contrary, by performing mea-
surements of the phase shift as a function of frequency, it is possible to reach
regions appreciably below the cutoff; the tunneling time can then be derived
by means of a Fourier-transform analysis. The results obtained confirm that
the effective group velocity for evanescent waves can exceed c [6].

Dispersion is always present, in the case of a waveguide, making the signal
analysis more complicated, especially in tunneling situations where the fore-
runners strongly influence the time of arrival (as explained in Sect. 12.1.3).

We wish to recall that both in the presence and in the absence of disper-
sion, the upper limit of the signal velocity in classically allowed motions is
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represented by the speed of light, as demonstrated for wave propagation in
dispersive media [7]. However, such arguments do not appear clearly appli-
cable to classically forbidden situations such as tunneling processes or, more
generally, in the presence of evanescent waves (see below).

Tunneling time in superluminal cases could be considered as a practical
case of a weak value observable within the framework of the weak measurement
theory, where mean values which would be strictly forbidden for any complete
ensemble can be obtained for a small subensemble [8].

In dealing with the microwave simulation of tunneling, a theoretical in-
terpretation was modeled on the basis of a path-integral solution of the tele-
grapher’s equation, analytically continued to imaginary time [9]. The salient
features of this model can be summarized as follows. It is known that, in
the absence of dissipation, the semiclassical delay time is simply given by
τs = L/|vgr|, where L is the length of the waveguide and vgr is the group ve-
locity, which for the TE01 mode is vgr = c

√
1 − ω2

0/ω
2, ω = 2πν the angular

frequency and ω0 = 2πν0 the cutoff angular frequency. By taking into account
the fact that dissipation produces a shift in the cutoff from ν0 = c/2b (b is the
width of the rectangular waveguide) to an effective cutoff ν̃0 = (ν2

0 + δ2)1/2,
where δ = ã/λ (ã is related to the dissipative parameter a entering the teleg-
rapher’s equation and λ the free-space wavelength) (Fig. 12.1). The question
is posed as to what extent model of this kind can account for the experimental
results. What clearly emerges from the comparison of the experimental results
obtained with microwave simulation (see Sect. 2.1) with the existing theoreti-
cal models is the good agreement with the corresponding theoretical curves as
deduced from quantum–mechanical models [10]. In particular, delay-time data
are in agreement with the phase-time model τφ = ∂Δφ/∂ω, (which represents
the real part of the delay), while data for τz (which represents the imaginary
part) are in agreement with the relative theoretical curve τz = ∂(lnT 1/2)/∂ω,
the complex transmission amplitude of the barrier being T 1/2exp(iΔφ) [11].

As for the prediction of the above modified semiclassical model-based,
as said, on path-integral solutions of the telegrapher’s equation—the relative
curve of the delay vs frequency appears to be in rather good agreement with
the absolute value of the complex traversal time (τ2

φ + τ2
z )1/2, rather than

with each (real or imaginary) component. This is nothing but the Büttiker
model based on a Larmor clock [12] in agreement with the more sophisticated
path-integral treatments of the tunneling time [13, 14]. Noteworthy is the
extreme brevity of τφ (the real part of the delay), throughout below the cutoff
ν0, which is confirmed by the experimental results. Superluminal effects can
be observed below a given frequency νc where the curve of τφ crosses the
constant value L/c (see the inset in Fig. 12.1). Below ν̃0, the Büttiker model
is practically coincident with τz (the imaginary part of the delay) as well
as with the modified semiclassical model. So, on this basis, we can conclude
that the path-integral treatment of the telegrapher’s equation makes the semi-
classical model a plausible one for a qualitative interpretation of the tunneling
time.
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Within this framework, it was shown that in tunneling processes the effec-
tive velocity turns out to be increased by an (imaginary) dissipation and, well
below the cutoff frequency, can actually overcome the light velocity c. This
conclusion was also confirmed by an extension of the analysis made in order
to compare the traversal time results, relative to a beat-envelope signal, with
the ones deduced from the distribution function of the “randomized time” and
its analytical continuation in imaginary time. What clearly emerges from this
analysis is the inverted role of the dissipative parameter, which in tunneling
acts as an “accelerator” of the motion [15, 16].

This apparent paradox can be explained by considering the fact that, when
we say dissipation in tunneling, we are not dealing with a true dissipation (as
when we consider the wave equation in allowed processes) but rather with
an imaginary quantity that was introduced in order to obtain the analytical
continuation of the wave equation.1 By following the same procedure adopted

1 A true dissipation, introduced ad hoc in a tunneling experiment, produces just
the opposite effect, that is, a slowing down of the motion [17].
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Fig. 12.2. Trajectory of a stochastic motion for a classically allowed case (contin-
uous line) and a forbidden—or tunneling—case (dashed line). In the first case, we
have a reversal of the motion in the x space (bradionic motion), while in the second
case the reversal happens in the t (imaginary) time (tachyonic motion)

by Kac [18] in order to individuate a stochastic model related to the telegra-
pher’s equation, a stochastic model related to tunneling processes was found
[19]. The basic assumption for this model is the interchange of the space x with
the time t (Fig. 12.2); in this way, we obtain a new equation of motion suit-
able for describing superluminal behavior. In addition, a close correspondence
between quantum relativistic motion and wave propagation in the presence
of dissipation is established. In particular, it is shown that the telegrapher’s
equation is connected to the Klein–Gordon equation of a bradyonic type when
the transformation [20, 21]

ϕ(x, t) = u(x, t)exp
(
− imc2t

�

)
(12.1)

is made, where ϕ(x, t) is the solution of the Klein–Gordon equation and u(x, t)
is the solution of the telegrapher’s equation. Analogously, a connection with
the Klein–Gordon equation of a tachyonic type can be established when the
transformation is

ϕ(x, t) = u(x, t)exp
(
∓ mc2t

�

)
. (12.2)

A schematic representation of these connections is shown in Fig. 12.3. The
attenuation of the wave function due to the exponential function in (12.2)
represents an important practical limitation for the observation of superlumi-
nal behaviors (for further details about the stochastic model see Sect. 1.2).

Let us now consider the problem of the signal velocity analysis. According
to Fox, Kuper, and Lipson [22], the front edge of a superluminal wave packet
will never exceed light speed, even if the group velocity is greater than c. Simi-
lar conclusions have also been drawn in more recent works [23, 24]. Therefore,
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Fig. 12.3. Block diagram showing the connection between quantum relativistic
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even if it is well established that the upper limit of a signal velocity is repre-
sented by the light speed in vacuum, it is not fully understood whether these
conclusions also hold true for tunneling processes and/or propagation in the
presence of evanescent waves. By following Brillouin [7], the propagation of a
pulse in the x-direction can be described by a contour integral in the complex
plane of ω[19, 25]

ψ(x, t) =
1
2π

Re
∫

γ

exp[−i(ωt− kx)]
ω − ωi

dω (12.3)

where ωi is the frequency of the incoming signal. The wave number for a
waveguide is k =

√
ω2 − ω2

0/c. For ω −→ ∞, we have k −→ ω/c, and the
exponential function in the integral becomes exp[−iω(t−x/c)]. By deforming
the contour of the integration into an infinite semicircle, this implies that the
integral is zero for t < x/c and that the first forerunner of the signal cannot
arrive before a time given by t0 = x/c. In the case of evanescent waves,
the exponential function becomes exp(−iωt − κx) where κ =

√
ω2

0 − ω2/c.
The integral which gives the signal is again zero if the domain of integration
extends to infinity. However, if we limit this range (the range in which we
have evanescent waves), the integral is different from zero. We wish to point
out that, because of the dependence of the result on ω0t0 = 2πx/λ0, the
contribution for t/t0 < 1 is strongly attenuated by increasing the distance
x. Therefore, for sufficiently large distances—say of a few cutoff wavelenghts
λ0—the superluminal contribution becomes quite negligible, and we again
obtain the usual result that nothing arrives before t0 (Fig. 12.4) [19, 26].

Thus, by limiting the range of integration in the ω domain, that is, by
considering the finite spectral extension of the pulse, we can actually obtain
that “something” arrives before the usual forerunner for 0 ≤ t ≤ x/c and
for short distances. We are aware that a finite spectral extension does not
represent a “true signal” which, on the contrary, requires an infinite spectrum.
By limiting the spectral extension, the signal is profoundly modified, since
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its spatial and temporal extension (initially supposed to be finite) becomes
infinite. In this way ψ(x, t) does not represent a true signal and, although its
profile is traveling with a group velocity vgr > c, there is no contradiction with
relativity. In the case of tunneling, the choice of limiting the frequency domain
is supported by the fact that evanescent waves have a finite spectral extension.
We wish to note, however, that any practical signal necessarily has a finite
spectral extension. The relative delay time, sometimes referred to as technical
signal or technical information delay [27], is not necessarily coincident with
the front edge delay which requires a consideration of the limit ω −→ ∞ . This
is a delicate point since infinite frequencies, as well as infinite time duration,
do not exist in physical phenomena. However, in practical applications, such
as telecommunications, and radar, the propagation velocity involved is beyond
dispute. The case of tunneling for the role played by evanescent waves is a
different matter. These waves are not properly propagating; however, there is
no doubt that in the experiments to which we refer “something” is propagated,
even if the spectral extension of the “signal” is well confined within the ω-
domain of evanescent waves.
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Let us try to focalize better this point. The deformation induced in a
signal due to the finiteness of the spectrum is known as the Gibb’s effect,
which consists of the appearance of damped oscillations before and after the
transition. The extension of the oscillations depends on the cutting frequency
ω, and tends to disappear as the cutting frequency tends towards infinity. As
formulas, we have

f(t) =
1
2π

∫ ∞

−∞
F (ω) exp(iωt) dω , (12.4)

where F (ω) is the Fourier transform (the spectrum) of f(t). In the presence
of a frequency limitation (as, for instance, in the response of a low-pass filter),
the pulse can be written as

fω(t) =
1
2π

∫ ω

−ω
F (ω) exp(iωt) dω , (12.5)

and shows the Gibb’s effect in the presence of a discontinuity (the signal).
The behavior is well known and can be experimentally verified especially if
the output of the signal is sufficiently delayed with respect to the input one,
so that the oscillation before the transition does not violate the causality
principle. According to this principle, the value of the answer to an excitation
f(t) to a given instant t cannot depend on the value that f(t) takes after
t. What does happen if this principle, according to the prediction of (12.5),
is not satisfied? Simply, the initial “acausal” oscillation is not observed, as
shown in Fig. 12.5.

This means that the pulses used in microwave tunneling simulations (pulse
duration ∼ 1 μs, pulse separation ∼ 1 ms) for measuring delays of the order
of nanoseconds should be considered as causal signals (even if, because of the
frequency limitation, they do not have the features of a perfect signal). Thus,
by tending the pulse separation to infinity (and, therefore, the repetition fre-
quency to zero), the behavior should remain the same and superluminal effects
in the group velocity should continue to be observed. In fact, a signal can be
defined as a pulse which supplies information. In order to have this condition
it is necessary to have a wave packet (or pulse) which must be also a “single
event”.

An effective experimental check of this point has been performed by con-
firming the superluminal behavior also for single microwave pulses [28]. In
[28], the signal velocity is identified with that of the first forerunner which,
by following Sommerfeld, cannot overcame the light speed in vacuum. How-
ever, as said before, a different conclusion can be reached by limiting the
spectral extension. Moreover, a different analysis of the forerunner (based on
the Steven’s procedure) showed results very similar to those related to the
phase-time model which predicts superluminal behavior (see Sect. 12.1.3). An
estimate of the timescale of the effect can be performed by considering that
the exponent in (12.2), that is, mc2t/�, has to be of the order of some units
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Fig. 12.5. Experimental observation of the Gibb’s effect in delay-time measure-
ments. The initial “acausal” oscillation, before the transition, is not observed while
it appears only the one after the transition

in order to have a nonnegligible amplitude of ϕ(x, t). For relativistic electrons
with mc2 � 0.5 MeV, we have a timescale of the order of 10−21 s. However,
this quantity is replaced by ω0t in the optical analogy, and the timescale be-
comes more accessible. So, for microwave experiments with ω0 ≈ 1010 s−1, the
resulting time delay is in the range of nanoseconds, while for photon tunneling
experiments �ω0 is of the order of few electronvolts and the time delay is of
the order of femtoseconds. Both these timescales have been experimentally
confirmed [6, 11, 29, 30, 31].

Another kind of system in which optical tunneling takes place consists of
a grating followed by a paraffin prism: if the period of the grating is lower
than the wavelength of the incident wave, all the diffracted waves, except the
zero-order one, are evanescent ones which are transformed into ordinary waves
by refraction on the paraffin prism (see Sect. 12.3).

A third kind of system which can be utilized for studying optical tunneling
consists of two prisms (with a refractive index greater than the refractive
index of air) facing each other and separated by an air gap. When the total
reflection takes place in the first prism, evanescent waves originate in the gap
(see Sect. 12.4). For this kind of experiment, a pure electromagnetic model
can be formulated.

12.1.1 Frustrated Total Reflection: An Electromagnetic Model

In order to analyze the experimental situation mentioned above, let us con-
sider a system formed by two half-spaces (two prisms in the experimental
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Fig. 12.6. Two prisms in the total reflection condition with the coordinate system
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setup), limited by plane-parallel boundaries, filled with a homogeneous and
nondispersive medium of refractive index n, and separated by a vacuum gap,
as shown in Fig. 12.6.

A plane electromagnetic wave impinges on the gap with an incidence angle
larger than the limit angle i0 = sin−1(1/n). By using standard methods, it is
possible to evaluate the transmitted field Et (and Ht too) and its deformation
with respect to the impinging wave. By comparing them, it is possible to
evaluate the time taken by the wave to “travel” through the gap.

By choosing an i, j, k (coordinates x, y, z) Cartesian reference system,
as shown in Fig. 12.6, from the boundary conditions (namely, the continu-
ity conditions of the tangential components of the fields at the surfaces of
discontinuity of the refractive index), we have

• In the half-space z < 0, the field is the superposition of two waves, the
impinging wave Ei, Hi and a reflected wave Er, Hr.

• In the gap, the field is the superposition of two evanescent waves, one
attenuated in the positive direction of k and the other attenuated in the
reverse direction −k . The former will be denoted as “progressive” wave
E+, H+, the latter as “regressive” wave E−, H−.

• In the half-space z > d, the field is composed of a single transmitted wave,
Et, Ht, propagating in the same direction as the impinging wave.

In the case of a monochromatic impinging wave, the incident Eiy , reflected
Ery , transmitted Ety, progressive E+

y and regressive E−
y fields can be written

as [32]
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Eiy = E0 exp
[
i
ω

c
n(αx+ γz)

]
exp(−iωt) (12.6)

Ery = E0 ρ exp
[
i
ω

c
n(αx− γz)

]
exp(−iωt) (12.7)

Ety = E0 τ exp
[
i
ω

c
n(αx + γ(z − d))

]
exp(−iωt) (12.8)

E+
y = E0 p exp

[
i
ω

c
(nαx + iΓ z)

]
exp(−iωt) (12.9)

E−
y = E0 r exp

[
i
ω

c
(nαx − iΓ z)

]
exp(−iωt) (12.10)

where ρ denotes the amplitude reflection coefficient and τ the transmission
coefficient of the gap. From the continuity conditions for the tangential com-
ponent of the electric fields across Π1 and Π2, we can derive the (complex)
transmission coefficient

τ(ω) =
4inγΓ

e1(Γ + inγ)2 − e2(Γ − inγ)2
(12.11)

where

γ =
√

1 − α2, Γ =
√
n2 − 1 − n2γ2 e1 = exp(−ωΓd/c) e2 = 1/e1 (12.12)

It appears from (12.11) that the gap behaves like a low-pass filter, since for
|ω| → ∞, τ → 0.

The expression τ(ω) allows us to evaluate the traversal time of the gap.
We consider the impinging wave front wi through O (at x = 0, z = 0) and the
transmitted wave front wt passing through O′ (x = 0 and z = d), as in Fig.
12.6. According to (12.7) and (12.8), the phase φi of the former is φi = −ωt;
that of the latter is φt = arg(τ)−ωt. It follows that a given value of the phase
is at O at time t = 0, and at O′ at time arg(τ)/ω.

The conclusion is that the phase takes a time

tph = arg(τ)/ω (12.13)

in passing from O to O′, that is, to travel distance γd (note that even for
ω = 0 the phase delay has a finite value, tph = arctan[(n2γ2 − Γ 2)d/2nγc]).

For nonmonochromatic waves, the group delay is

tgr = tph + ν
∂tph

∂ν
=

∂

∂ω
[arg(τ(ω))] . (12.14)

From (12.11) we have

arg(τ(ω)) = arctan
[
n2γ2 − Γ 2

2nΓγ
tanh

(
ωΓd

c

)]
, (12.15)

hence tgr can be obtained as
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tgr =
2nΓγ td (n2γ2 − Γ 2)

(2nΓγ)2 cosh2(tdω) + (n2γ2 − Γ 2)2 sinh2(tdω)
, td =

Γd

c
.

(12.16)
In Fig. 12.7 we show results of tph as a function of Γ for some values of

the frequency ν (ω = 2πν), for d = 2 cm and n = 1.49.
Results of tgr, as a function of Γ , are reported in Fig. 12.8 for the same

parameter values as in Fig. 12.7.
The results obtained show a clear superluminal behavior both in phase

and group delays. This behavior is dependent on the frequency, as well as on
Γ : in particular, for Γ = nγ, that is, for γ2 = (n2 − 1)/2n2, the phase and
group delays go to zero. For higher values of Γ , they became negative.

12.1.2 More About the Stochastic Model

The stochastic motion of a particle moving along a line with constant velocity
v and suffering collision that can reverse its motion is described by an equation
of motion equal to the telegrapher’s one [18]. In the absence of dissipation,
the said motion does not suffer reversal, and the delay time for a displacement
L is given by L/v. On the contrary, in the presence of dissipation, the time
is described by a randomized quantity, the distribution g(r, t) of which is a
two-variable time function. The first time, r, is a fictitious time that describes
the delay which a particle would take if the motion was without reversals.
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Fig. 12.7. Phase delay (continuous line) between the wavefronts wi and wt, as
deduced from (12.13), as a function of Γ (or of incidence angle) for n = 1.49, d = 2
cm and for some values of the frequency ν ranging from 8 GHz (upper curve) to
11 GHz (lower curve). The dashed line represents the time tl of a wave traveling
distance γd at the light speed
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The second time, t, is the true time, that is, the delay that a particle suffering
reversals spends in going from one given point to another.

By using the time distribution g(r, t), we can derive the average time r,
which results in [15]

r(t) =
1
2a

(
1 − e−2at

)
, (12.17)

where a is the friction coefficient that enters the telegrapher’s equation. For
classically forbidden processes, the average time t can be evaluated as

〈 t 〉 =

∫ ∞
−∞ it g(ir, it) d(it)
∫ ∞
−∞ g(ir, it) d(it)

(12.18)

where g(ir, it) is the distribution function of a stochastic process analytically
continued to the imaginary time [33]. When developed, (12.18) produces the
following result:

〈 t 〉 =
r[2 sin ar − ar] + ir[2 cos ar − 1 + 2a2r2/3]

(2 cos ar − 1) + 2i(ar − sinar)
≡ Re 〈 t 〉 + iIm 〈 t 〉 , (12.19)

where r = L/v is the semiclassical time and v is the velocity in the forbidden
region (barrier). Thus, the average tunneling time is a complex quantity which,
for L/v tending to zero, can be expressed as

〈 t 〉 � a

(
L

v

)2

+ i
L

v
(12.20)
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where L/v represents the imaginary part and parameter a is responsible for
the real part, which is zero if a = 0 and depends quadratically on L/v. How-
ever, if a is zero, must we believe that a real part of the tunneling time does
not exist? This is certainly not the case, since any dephasing through the
boundaries of the barrier can contribute to real time (phase-time model). An
alternative approach for evaluating this duration is represented by Feynman’s
transition elements [34]. By applying these, we can obtain a contribution to
the tunneling time of the (L/v) exp(−S0/�) type, that is, a result according
to which the real-time duration is provided by the semiclassical time (L/v)
attenuated by the factor exp(−S0/�), with S0 as the classical action. In typ-
ical cases, with S0 of the order of a few units of �, this factor is of the order
of 10−2−10−3, and a contribution of a few picoseconds is compatible with
semiclassical times of the order of 102 ps, as in Josephson junctions [35]. In
this work, it has been concluded that this contribution should be added to
the one evaluated by the stochastic model which, in this case, turned out to
be on the same scale of picoseconds. On the contrary, we have to believe that
the two contributions—namely the one given by the stochastic model and the
one evaluated by the transition elements—are really the same result. In fact,
even within the framework of the transition elements, we arrived at a result
of the type [36]

〈 t 〉 � imc2

�

(
L

v

)2

(12.21)

which, by identifying imc2/� with a [19], becomes

〈 t 〉R � a

(
L

v

)2

(12.22)

exactly as the real part in (12.20). This result tends to put the stochastic
model in a different light, one that is not limited by the presence of dissipation
(which is always present in macroscopic systems), but that is also capable of
interpreting situations in which dissipation is absent or negligible.

Another and perhaps more important result, one that is peculiar to the
stochastic approach, was obtained when the range of the variable L/v was not
limited to small values, but was extended, depending on the parameter a, to
large values of L/v. In this way, we found that real time as a function of L/v
shows the unexpected presence of a peak (Fig. 12.9), situated approximately
at a value of L, so that the semiclassical time L/v is nearly equal to the time
a−1. Behind this peak, the curve continues with a nearly quadratic law.

This behavior, that is, the presence of a peak in the real part of the traver-
sal time, supports the hypothesis of a kind of resonance, which is also con-
firmed by the curve of the imaginary part of the time. In fact, this curve shows
a typical shape (Fig. 12.10), with a zero in correspondence with the position
of the above-mentioned peak which is a characteristic of resonances. The ori-
gin of this resonance is not completely clear: we note that its occurrence, for
L/v ≈ a−1, could be interpreted by rewriting this condition as aL ≈ v, and
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hypothesizing that it occurs—producing a strong increase in real time—when
the semiclassical (imaginary) velocity v becomes comparable with the quan-
tity aL. The latter has velocity dimensions and acts in the sense of slowing
down the motion, thus increasing the traversal time of the barrier.
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More important than the theoretical interpretation is the experimental test
of this behavior. Two experiments were performed in the microwave range
(wavelength, λ � 3 cm). One measured the penetration time in a barrier
consisting of a rectangular waveguide excited below the cutoff frequency (see
Sect. 12.2.2); the other measured the lateral shift of a microwave beam in the
case of frustrated total reflection (Sect. 12.4). For a more detailed theoretical
interpretation, see [37] and [38].

12.1.3 The Procedure of Stevens and the Role of the Forerunner

We analyze here a development of a theoretical model due to Stevens [39].
The essence can be summarized as follows. According to Brillouin [7], the
signal velocity in a dispersive medium can be determined by evaluating the
arrival of the main front of a uniform pulse. The latter is initially described
by a function of the type exp(−iωit) for t ≥ 0 and zero for t < 0; for a
propagation along the x axis, it can be expressed by the contour integral in
the complex plane of ω (similar to (12.3)) as

ψ(x, t) =
1

2πi

∫

γ

exp[−i(ωt− kωx)]
ω − ωi

dω , (12.23)

where γ is a closed path including ωi. For a nonrelativistic particle of mass
m, the wave number is expressed as kω = �

−1[2m(E − V0)]1/2 for E = �ω
either for E > V (x) ≡ V0 or E < V (x) ≡ V0. In order to evaluate the above
integral, it is suitable to introduce the new variables z2 = ω − V0/� and
ξ = x (2m/�)1/2. Thus, by substituting in (12.23), we obtain

ψ(ξ, t) =
exp(−iV0t/�)

2πi

∫

Γ

exp[i(zξ − z2t)]
z2 + V0�−1 − ωi

2z dz . (12.24)

The integral in (12.24) can be evaluated by the method of the steepest
descent, by analyzing the behavior of the exponent in the neighborhood of
the saddle point of the function F (z) = zξ − z2t, that is, where z = ξ/2t.
The conformation of the saddle point, shown in Fig. 12.11, suggests that the
appropriate integration path Γ , at least in the region of the saddle point, is
the straight line z = (ξ/2t) + ρ exp(−iπ/4), where ρ is the distance from the
saddle point.

With increasing time, the saddle point moves along the real axis of z from
infinity (at t = 0) toward the origin (for t → ∞) and the integration path Γ
analogously behaves. The integrand in (12.24) has two poles situated on the
real and imaginary axes for E = �ωi > V0 and E < V0, respectively, that is,

z = ± (ωi − V0�
−1)1/2, E > V0 (12.25)

z = ±i(V0�
−1 − ωi)1/2, E < V0 (12.26)

For E > V0, the main contribution to the integral (12.24) arises as soon
as the integration path arrives at one pole of (12.25) and is given by
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Γ Γ

Fig. 12.11. Integration path Γ in the complex plane z at two different instants.
The integration path is coincident with the steepest descent line of the saddle point.
In the dashed area, the real part of the exponent of (12.24) is greater than zero, in
the other one, the real part is less than zero. When the path arrives at the pole, its
contribution must be considered

exp[iξ(ωi − V0�
−1)1/2] exp(−iωit). This quantity is definitely larger than the

saddle point contribution constituting a small forerunner of the signal before
the integration path has reached the pole. The principal part of the front of
the pulse travels with a uniform velocity

v =
x

t
=

(
�

2m

)1/2
ξ

t
= 2(ωi − V0�

−1)1/2
(

�

2m

)1/2

=
�k

m
, (12.27)

in agreement with the semiclassical analysis, which gives the traversal time as

τ =
m

�

L

|k| . (12.28)

For E < V0, the situation is more complicated. When the integration
path arrives at one pole, now situated on the imaginary axis (12.26), the pole
contribution is now given by

exp[−ξ(V0�
−1 − ωi)1/2] exp(−iωit) . (12.29)

This quantity describes the arrival of an important part of the pulse attenu-
ated in amplitude by the factor

exp[−ξ(V0�
−1 − ωi)1/2] = exp{−[2m(V0 − E)]1/2x/�} = e−|k|x , (12.30)

which for x = L gives the expected result. More important, the time of arrival
of this contribution, as determined by the crossing of the integration path
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over the real axis (which has the same value of that of the crossing over the
imaginary axis, see Fig. 12.11), is given by

ξ

2t
= (V0�

−1 − ωi)1/2 . (12.31)

In this way we find that also in the case of tunneling an important part of the
front of the pulse travels with the uniform velocity

v =
�|k|
m

. (12.32)

However, in tunneling cases in which the pole contribution is given by the
quantity (12.29), the contribution of the saddle point is definitely not smaller.
In fact, it can be seen that (12.24), in the saddle point approximation, gives

ψ(ξ, t) =
(

2
πξ

)1/2

exp
{
i

[(
ξ2

4t2
− V0

�

)
t− 3

4
π

]}

×
[(

ξ

2t

)3/2 (
ξ2

4t2
+ V0�

−1 − ωi

)−1
]
. (12.33)

The modulus of ψ decreases to zero either for t → 0 or for t → ∞, and is
mainly characterized by the last factor in squared brackets, which reaches its
maximum near the coordinate value z0 given by (12.31). At z = z0, (12.24)
becomes

ψ(x, t)z=z0 =
1√

2π|k|x
exp

[
−i

(
ωit+

3π
4

)]
. (12.34)

and, by comparison with (12.30), it turns out that the contribution of the
saddle point at z0 is never negligible but rather comparable to or greater than
the one corresponding to the arrival of the attenuated pulse. More precisely,
on the basis of (12.33), we find that in the forbidden region (�ωi < V0), the
contribution of the saddle point tends to anticipate the arrival of the signal
with respect to the prediction of (12.28), while in the allowed region (�ωi > V0)
the influence of the saddle point contribution should be negligible.

Let us now consider the total solution of integral (12.24) by including
in the analysis the saddle point, the pole and the line-integral contributions
[40, 41]. By putting Ω = �

−1(E−V0) we have that the two poles, as given by
(12.25) and (12.26), are situated at ±Ω1/2.

For Ω > 0 (allowed region), the main contribution to the integral arises
as soon as the integration path arrives at one pole (at a time given by
2t/ξ = Ω−1/2) with a constant oscillating expression of unitary amplitude
exp[i(ξΩ1/2 − ωit)]. Previously, during the approach to the pole, the integra-
tion gives an oscillating part the amplitude of which increases to about 1/2 the
final amplitude; afterwards, while leaving the pole, we have a contribution—in
opposition of phase—the amplitude of which decreases from 1/2 the final one
to very small values [7]. The superposition of the several contributions gives
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Fig. 12.12. Representation of the wave function after a barrier length ξ =
x(2m/�)1/2 = 16 and Ω = 0.25 (classically allowed region) as a function of time.
The pole contribution is at 2t/ξ = Ω−1/2. This contribution is of unitary amplitude
and frequency ωi = 0.9 and combined with the line contribution gives rise to a con-
tinuous oscillating function of increasing amplitude, which tends asymptotically to
unity

rise to a continuous oscillating function the amplitude of which increases con-
siderably around point Ω−1/2, as shown in Fig. 12.12.

The contribution due to the saddle point contributes to the forerunner
of the signal. The latter is given by the whole line integral, which mainly
consists of the saddle point contribution in the tunneling region (Ω < 0). For
the considered case of Fig. 12.12, inclusion of the saddle slightly modifies the
shape of the complete signal whose time of arrival, measured at the midpoint
of the maximum amplitude, can be also evaluated by simply considering the
total envelope (Fig. 12.13).

For Ω < 0 (forbidden region), the situation is similar, but the results
are strongly influenced by the forerunners. When the integration path arrives
at one pole, now situated on the imaginary axis of z, the pole contribution
describes the arrival of a part of the pulse attenuated in amplitude by the
factor exp(−|k|x). In this way, a significant contribution is made to the signal
that travels with a uniform velocity v = �|k|/m. However, in this case, the
contribution of the saddle point, which constitutes part of the forerunner, is
not negligible but rather comparable to or greater than the one corresponding
to the arrival of the attenuated pulse. Moreover, whenever it is not negligible,
the latter is typically so deformed that at the instant of arrival of the pole
contribution, the signal shows nothing peculiar that would suitably recognize
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Fig. 12.13. Time dependence of the complete signal for the case of Fig. 12.12.
The saddle contribution and the envelope are also shown. The time of arrival, taken
halfway of the maximum amplitude, is marked

its presence. An example of a computed signal alone and then combined with
the saddle contribution is shown in Fig. 12.14.

As before, the time of arrival of the complete signal can be determined sim-
ply by considering the envelope and taking the time required to reach 1/2 of
the maximum amplitude. For a classically forbidden region, this time is quite
near the one predicted by only considering the saddle point (which, sufficiently
below the barrier, tends to coincide with the forerunner). In Fig. 12.15, several
computations of the arrival time of the complete signal have been performed
as a function of Ω, for different values of the barrier length. We note that the
resulting behaviors are in qualitative agreement with the predictions of the
other models, especially the phasetime one in the tunneling region. More in-
terestingly, these theoretical predictions appear to be confirmed by the results
of delay-time obtained by a microwave simulation below the cutoff (see Sect.
12.2).

12.2 Sub cutoff Microwave Propagation in Waveguide

12.2.1 Delay Time Through a Rectangular Potential Barrier

We report here the results of an experiment in the microwave range in which a
step-narrowing in the waveguide simulates a quantum-mechanical rectangular
potential barrier, as shown in Fig. 12.16.

This experiment represents a contribution toward an understanding of a
complicated problem mainly for the facility of performing a microwave exper-
iment, which magnifies the timescale up to nanoseconds. The measurements
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Fig. 12.14. Time dependence of the complete signal for ξ = 4 and Ω = −0.01 (clas-
sically forbidden region) and ωi = 1. The signal alone, without saddle contribution,
is also shown. The time of arrival, taken halfway of the maximum amplitude and
according to the semiclassical analysis, is marked

can be compared with theoretical predictions as deduced from the existing
models of quantum tunneling since the transposition is relatively easy, as ex-
plained in Sect. 12.1.

Let us consider the X-band microwave circuit of Fig. 12.17 in which there
is a step-narrowing represented by a portion of waveguide in P band of length
L, section a′ × b′ (7.9 × 15.8 mm2), less than the normal size in X band
a× b (10.16 × 22.86 mm2).

The signals S1 and S2 were detected before and after the narrowing, respec-
tively, and sent to an oscilloscope where the delay time is directly measured.
The microwave signal—like a step function—was supplied by a klystron mod-
ulated by a pin modulator the fall time of which (<10 ns) was suitable to
measure delay times down to <1 nanosecond. The delay time was measured
as the distance between the falls at half-height of the signal after and before
the narrowing, and was detected until the deformation of the signal between
the input and the output was modest and the measurement was still reliable.

Measurements of the delay time performed as a function of the frequency,
for L = 15 cm, are reported in Fig. 12.18 together with the theoretical predic-
tions relative to the quantum-mechanical models (see the following section).

We note that, although none of the theoretical curves is far from the exper-
imental results, above the cutoff, the experimental results tend to reproduce
both the τBL and τφ models. Below the cutoff, however, the phasetime model



376 D. Mugnai and A. Ranfagni

0 0.1 0.2 0.3–0.1–0.2–0.3

1

2

4

5

6

7

8

9

10

FORERUNNER

Ω

2t / ξ

ξ = 16
ξ = 8
ξ = 4

3

Fig. 12.15. Tunneling time duration determined by evaluating the arrival time of
the complete signal, for some values of the barrier length. In the classically allowed
region (Ω > 0), the results are more or less comparable with respect to the semi-
classical model (continuous line), while in the tunneling region (Ω < 0) they differ
deeply from it having much smaller tunneling times

τφ appears to be most adequate. Measurements with L = 20, 10, and 5 cm
were also performed using the same experimental apparatus. In the first case
(L = 20 cm) the peak of the delay moves toward the cutoff and the value
of the maximum increases, as physically expected. However, for this distance
problems arose due to the great attenuation of the pulse; the delay was de-
tectable only in a small range below the cutoff, thus making it difficult to
discriminate among the models. For L = 10 and 5 cm, the peak of delay
was displaced toward the higher frequencies as theoretically expected, and
below the cutoff the data well followed the phasetime model in both cases. On
the other hand, the measurements were less reliable with shorter narrowing
lengths because of spurious effects due to the discontinuities where the guide
section changed abruptly from a × b to a′ × b′ and higher-order evanescent
modes may have played a role. These discontinuities act as parallel inductive
shunts and influence the phase behavior [42] even if their effect in the fre-
quency dependence is quite negligible. In fact, the variation in the height of
the guide introduced in the equivalent circuit a negligible capacitive reactance
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Fig. 12.16. TE01 mode propagating in the X-band waveguide with a narrowing
of length L which creates the barrier. The quantum-mechanical analog is shown

XC ≈ 13, 000Ω at 9.5 GHz where the characteristic impedance of the X-band
guide was ∼ 500Ω. On the contrary, the width variation caused a considerable
inductive reactance XL ≈ 2000 Ω. However, in order to eliminate or reduce
the effect of discontinuities at the connection between the X-band guide and
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Fig. 12.18. Delay time (open circles) as a function of the frequency for L = 15
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(12.40), (12.45), and (12.46), respectively

the P -band narrowing, an X-P adapter which allows a “soft” passage from
the X to P band was then employed. For L = 15 cm, the delay-time measure-
ments performed with the above-mentioned adapters almost coincided with
those performed without adapters, thus showing that the effect of disconti-
nuities, even if producing some disturbance, did not appreciably modify the
transmitted signal.

In order to compare the experimental results with the quantum-mechanical
models, let us consider that, for the mode TE0,1, the refractive index in the
waveguide is given by n = [1 − (λ/2b)2]1/2 (λ is the wavelength in the free
space) and that the guide represents a dispersive medium with n < 1 for
λ < 2b. When λ > 2b, the index becomes imaginary and evanescent waves
originate. The experimental apparatus corresponds to a rectangular potential
barrier, as sketched in Fig. 12.16, with the substitution

k =
2π
λ
n→ 1

�
[2m(E − V0)]1/2 . (12.35)

More precisely, the “momentum” of (12.35) is expressed as

k =
2π
λ

vgr,g
c

= 2π
(
ν2

c2
− 1

(2b′)2

)1/2

, (12.36)

where vgr,g = c [1− (λ/2b′)2]1/2 is the group velocity in the narrowed guide, c
is the light velocity, and ν is the frequency. The “momentum” for the section
of width b is
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k1 = 2π
(
ν2

c2
− 1

(2b)2

)1/2

(12.37)

and the quantity

k0 = 2π
(

1
(2b′)2

− 1
(2b)2

)1/2

=
(
k2
1 − k2

)1/2
(12.38)

corresponds to a potential step of height V0.
The delay time can be derived simply by modifying the corresponding

quantum-mechanical results. This is easily done by considering that the dis-
persion relation, which for quantum waves in a region of constant potential
is ω = (�k2/2m) + (V0/�) , becomes as (12.36) and (12.37) for electromag-
netic waves in a wave guide. By differentiating, the “group velocity,” which for
quantum waves is dω/dk = �k/m , becomes dω/dk = c2k/ω for the waveg-
uide. Thus we can adopt the formulas of quantum mechanics for waveguides
by the substitution

�

m
→ c2

2πν
. (12.39)

Accordingly, the Büttiker and Landauer traversal time [12], defined as the time
τx through a rectangular barrier expressed by means of the energy dependence
of the complex transmission amplitude that includes both phase changes and
amplitude, can be written as

τBL ≡ τx = (τ2
y + τ2

z )1/2

� 1
2π

[(
∂

∂ν
Δφ

)2

+
(
∂(lnT 1/2)

∂ν

)2
]1/2

, (12.40)

where the transmission coefficient T and the phase change Δφ in transmission
through the barrier are given by

T =
{

1 +
[
(k2

1 − k2)2

4k2
1k

2

]
sin2(kL)

}−1

(12.41)

tan(Δφ) =
k2 + k2

1

2kk1
tan(kL) . (12.42)

According to relation (12.39) and (12.36–12.38), τy and τz are given by

τy =
2πν
c2k

∂Δφ

∂k
=

2πν
c2

k1

k

[
2kL(k2

1 + k2) − k2
0 sin(2kL)

4k2k2
1 + k4

0 sin2(kL)

]
, (12.43)

τz =
2πν
c2k

∂

∂k
lnT 1/2 =

2πν
c2

k2
0

k2

[
(k2

1 + k2) sin2(kL) − (k2
0kL/2) sin(2kL)

4k2k2
1 + k4

0 sin2(kL)

]
.

(12.44)
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Note that for k1 � k, k0 and opaque barriers (kL � 1), (12.44) tends to the
simple semiclassical result

τs =
2πν
c2

L

|k| . (12.45)

On the other hand, in the cutoff region where k1 � k0, τy (named in the
literature as dwell time) as given by (12.43) is practically coincident with the
phase-time delay τφ given by

τφ =
2πν
c2k1

∂Δφ

∂k1
=

2πν
c2

1
k k1

[
−k4

0 sin(2kL) + 2k1k
2(k2

1 + k2)L
k4
0 sin2(kL) + 4k2k2

1

]
. (12.46)

In all the above equations (12.41–12.46), k, k1, and k0 are given by (12.36–
12.38) even for frequencies lower than the cutoff (ν0 = c/(2b′) = 9.494 GHz)
where k becomes imaginary.

Equations (12.40), (12.45) and (12.46) are reported in Fig. 12.18, together
with the experimental results. As previously anticipated, we can see that the
phase-time model appears to be the most adequate one for reproducing the
experimental results, while, in other cases, this model appears inadequate (see
Sects. 12.2.2 and 12.4)

Measures of delay time and amplitude below the cutoff were performed also
in a different way, by utilizing a two frequencies method. The configuration
of the experimental setup is shown in Fig. 12.19.

The beat envelope of the two signals at two very near frequencies ν1 and
ν2 is detected. Because of the nearly quadratic characteristic of the detectors,
the ratio of the components of the amplitude of the beat V2 and V1 (measured
after and before the narrowing, respectively) is proportional to the product of
the square root of the transmission coefficient at the two frequencies T 1/2

1 T
1/2
2

[44]. Thus, for a given frequency ν1, by varying ν2 and by determining with
a fitting procedure the slope of the curve lnT 1/2

2 as a function of ν in the
neighborhood of ν1, we get τz by means of the second term in (12.40). The
results obtained for L = 15 cm are reported in Fig. 12.20.

As expected, one can observe that the data derived from the beat-envelope
amplitudes reasonably follow the theoretical curve of τz while the experimen-
tal data of beat delay better follow the curve of τφ. In the same figure, the
semiclassical model, obtained in the framework of telegrapher’s equation (see
Sect. 12.1) is also reported.

12.2.2 Penetration Time Inside a Barrier of Infinite Length

We describe here an experiment, at microwave scale, which simulates a
quantum-mechanical rectangular barrier of infinite length [36]. In this experi-
ment, the signal is constituted by squared pulses, which modulate the carrier
and is measured simultaneously before the barrier edge and inside the bar-
rier, in a variable position l (see the inset in Fig. 12.21). The waveguide in the
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Fig. 12.19. Experimental setup employed to measure the delay time and the beat-
envelope amplitude V1 and V2 with two slightly different frequencies generated by
two klystrons. From V1 and V2 the time τz is derived

P -band was filled by a dielectric, Teflon, so that the frequency of the carrier
was above the cutoff. The two signals were sent to a dual channel oscilloscope
suitable for measuring the temporal delay between the two signals with suf-
ficient accuracy. Reliable measurements required the use of frequencies near
the cutoff one (ν0 = 9.494 GHz) and a penetration depth in the barrier of a
few centimeters, in order to have an acceptable attenuation of the waves.

The measurements were performed at several values of the frequency car-
rier that ranged between 9.46 and 9.28 GHz. They were then compared with
the curve of the real part of the traversal time as given by the stochastic model
((12.19) in Sect. 12.1.2). This was computed for a given frequency ν, which
determined the velocity through the relation v ≡ |vgr,g| = c

√
(ν̃0/ν)2 − 1,

with ν̃0 as the effective cutoff frequency given by ν̃0 =
√
ν02 + ã2ν2/c2, by

selecting the value for ã which best described the experimental data.
In extreme cases (ν = 9.46 and 9.28 GHz), the results obtained showed a

clear monotonic (nearly quadratic) behavior, increasing with l, the description
of which by the stochastic model required values for a of the order of 1 ns−1

or less. More interesting were the cases at intermediate frequencies (9.39, 9.33
GHz), which exhibited more complicated behavior, with the presence of a
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more or less pronounced peak as predicted by the theoretical model in some
cases (see Fig. 12.21).

In Fig. 12.21 we report the results obtained for ν = 9.33 GHz. These
showed a clear increase in the delay up to values of l around 2.5 cm. However,
for larger values of l, the delay tended to decrease or, at least, to saturate.
The resulting peak was, however, not as accentuated as predicted by the above
theory, but rather was damped as if a damping coefficient were present in the
resonance (a phenomenon analogous to the lowering of the coefficient Q of a
resonant circuit or cavity [43]). By taking into account that in tunneling cases
the dissipative parameter a represents an imaginary dissipation, that is, not
dissipative but rather reactive, it is plausible to introduce a truly dissipative
effect by including a suitable imaginary part in parameter a, so that a→ a+ib.
In this way, we obtained more damped peaks in the curves of the real part
of the time, as shown in Fig. 12.21, where the lower curve is obtained for
a = 2.25 − i0.5 ns−1.

It seems, therefore, that by means of this experiment we have obtained
a sufficiently clear demonstration of the validity of the stochastic model for
tunneling, even independently of the existence of the peak in the curve of
the delay time. This peak, however, strongly supports the theoretical model,
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Fig. 12.21. Penetration time results (small crosses, triangles and circles refer to
different series of measurements) as obtained with the experimental setup shown in
the inset. The carrier frequency was ν = 9.33 GHz, the cutoff frequency ν0 = 9.494
GHz. The upper curve refers to a = 2.25 ns−1; the lower curve is obtained by
including an imaginary part, namely a = 2.25 − i0.5 ns−1

even if its implications are rather surprising. In fact, the traversal time of
the forbidden region tends to decrease for certain values of l, while the dis-
tance increases. This unusual behavior deserves further investigation before
any definitive conclusion can be safely drawn. It is worth noting, however,
that in the region of the resonance peak the punctual velocity, as given by
the inverse of the derivative, supplies velocities which are infinite in the two
stationary points (A and B in Fig. 12.9, Sect. 12.1.2) and negative in the
intermediate interval.

12.3 Delay-Time Measurements
in a Diffraction Experiment

Here we describe an experiment of optical tunneling performed in order to
measure the delay time for evanescent waves generated by diffraction. In the
experiment, the phase-delay time was directly measured and group delay was
then deduced from the previous results. Microwaves with a wavelength of
about 3 cm were used in connection with a metal-strip grating, the period of
which was chosen so that all the diffracted waves, except the zero-order one,
were surface (evanescent) waves attenuated along the direction perpendicular
to the grating. One of the first-order waves was transformed into an ordinary



384 D. Mugnai and A. Ranfagni

launcherfrom the generator incident wave

ordinary
zero - order wave

diffracted
first - order wave

receiver

to detector
and meter

coaxial cable
(reference signal)

slotted
waveguide

G P

D d

x

Fig. 12.22. Experimental setup consisting of a grating G and a paraffin prism
P separated by a gap whose width is d. Two horn antennas (the launcher and the
receiver) allow accurate phase measurements by means of a slotted waveguide where
the reference signal is combined with the signal picked up by the receiver

wave by refraction on a paraffin prism; it was then revealed by means of a
receiver. The experimental setup is shown in Fig. 12.22.

Besides the grating and the prism, it includes two horn antennas, one as
launcher and the other as receiver. The latter is followed by a slotted waveg-
uide in which the signal picked up is combined with a reference signal derived
from the generator. In this way, we could make accurate phase measurements
by detecting the probe position corresponding to a minimum (which exactly
indicates the opposition of phases of the two waves) of the amplitude of the
resulting signal [44].

The results are shown in Fig. 12.23. Here, the probe position x is reported
as a function of the distance d between the grating and the prism. The period
of the grating is p = 3 cm and the measurements were made at a frequency
ν = 9.24 GHz, below the cutoff frequency ν0 = c/p = 10 GHz.

The measurements were performed while keeping all components at fixed
position; only the gap distance d was varied. Since D0 ≡ d+D = 52 cm was
taken to be constant, the distance D between the grating and the launcher
also changed.

By performing a set of measurements like the one shown in Fig. 12.23,
each for a different frequency, we could derive the delay as a function of the
frequency. The results are shown in Fig. 12.24, together with the theoretical
curves. In the absence of a grating, a prism, etc., the total propagation time of
the wave for the indicated distance would be D0/c; thus, the time attributable
to the traversal of the gap would be d/c = (D0/c) − (D/c). Consider that
for large D/λ the velocity prior to reaching the grating is, in an excellent
approximation, just c. However, as the gap varies away from zero, the relative
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Fig. 12.23. Probe position x, relative to a constant phase value, as a function of
gap width d for ν = 9.24 GHz. The probe position is approximately linear in the gap
size and it is only the average slope of the curve that is ultimately used in (12.49).
For this reason our results are not sensitive to slight deviations from straight line
behavior (the waviness in the curve) nor to the zero position of the x variable. In
practice, we used the variation Δx for a gap width d = 3 cm

phase of the reference signal and the wave that actually passes through the
grating, etc., change and the probe is moved until they match again.

A probe displacement Δx means that the wave through the prism has
gained some time (with our sign convention). Therefore, by using the phase
velocity vph,g within the slotted waveguide (where the probe is located), this
yields

τph(ν) =
d

c
− Δx(ν)

vph,g
, (12.47)

for the time in the gap (as a function of frequency), where vph,g = c/√
1 − (λ/2b)2, λ is the free-space wavelength and b =22.86 mm is the width

of the waveguide. The quantity Δx is positive when the x position increases
as it goes away from the receiver horn (see Fig. 12.22).

By substituting vph,g in (12.47), the phase delay can be rewritten as

τph(ν) =
d

c

[
1 − Δx(ν)

Δx′(ν)

]
, (12.48)

where, by denoting the wavelength in the waveguide with λg,

Δx′(λ) = d
λg

λ
=

d√
1 − (λ/2b)2

(12.49)

is the variation of the probe position in the waveguide corresponding to the
variation d in free space. This means that if Δx turns out to be equal (or
nearly equal) to Δx′, the phase delay in the gap is equal (or nearly equal)
to zero. In the example of Fig. 12.23, when referring to a frequency below
the cutoff, the phase delay for a gap of 3 cm turns out to be ∼ 10 ps, while
the phase delay for the same distance in free space is 100 ps. This shows—as
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expected—that the phase delay of an evanescent wave is very much shorter
than the phase delay of a free propagation.

As for the group delay, we have to consider that in free space it coincides
with the phase delay, while in the gap, which is a dispersive system, it is
different. By fitting each data set with a straight line as in Fig. 12.23, we
can determine, through (12.48), the phase delay for selected values of d. The
results obtained for d = 3 cm are reported (full circles) as a function of the
frequency in Fig. 12.24. From these values, we can evaluate the group delay as

τgr = τph + ν
Δτph

Δν
. (12.50)

The group delays are shown in Fig. 12.24 by means of open circles with
fiducial bars. The fiducial bars have been estimated by the χ2 criterion as

σ ≈
(∑N

i=1Δ
2
i /N

)1/2

where Δi are the differences (residuals) between the
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Fig. 12.24. Delay-time results and associated theoretical curves for a gap width of
d = 3 cm for which the corresponding time for light velocity propagation would be 0.1
ns (dotted line). Solid circles are the experimental phase-time delays obtained from
phase measurements. The two lower curves are the fitting of the experimental data
(dashed line) and the phase delay (continuous line) as predicted by the theoretical
model τph = Δφ/ω. Open circles with fiducial bars represent group-delay results
derived from phase-delay data. The two upper curves are the group-delay model
(continuous line) and the group delay deduced from the fitting curve below (dashed
line)
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theoretical and the N experimental values of τph. It is interesting to note that
the group delay understood to be the ratio of the variation of Δφ over the
frequency variation Δω, is exactly what we could obtain by operating simul-
taneously with two waves at frequencies ω and ω+Δω and by measuring the
delay of the beat (a way of obtaining the group delay) in both the allowed
and forbidden regions. In this way, our procedure for determining the group
delay is directly connected to a real physical situation.

Since calculation of the group delay involves the derivative of the measured
quantities, it is reasonable to calculate first a smoothing of the data, and to
deduce then the group delay from that. Ideally, if a theoretical description of
the experiment which depended on one or two parameters were available, the
measured data could be used to establish the values of those parameters. Then
for the group velocity the derivative of the phase velocity could be taken as
given by a theoretical function dependent on the measured parameters (and
the error bars would reflect uncertainty in the values of the parameters). In
contrast, a straightforward calculation of the derivative by considering the
differences of the experimental values would exaggerate the normal variation
of the experimental output. Unfortunately, an exact theoretical calculation of
the phase shift would be difficult, mainly because the prism is in the near
field of the grating and the wavelength is close to the critical value for the
grating. Moreover, the slits themselves are of intermediate geometry, being
neither infinite slits nor circles; each of them carries different phase factors.

It is convenient to proceed along both lines. We used a phenomenological
model to motivate reasonable curve fitting and then use the fitted curve to
calculate the derivative. However, we also took the data and performed the
most naive kind of derivative calculation. As will be seen below, the latter did
not place τgr quite so deeply into the superluminal regime, although over a
significant range even this leaves no doubt that the delays are less than would
be obtained from velocity c.

The phenomenological model is based on the theoretical description of
tunneling, namely [45]

tan(Δφ) =
nk2 − κ2

(1 + n)kκ
tanh(κd) (12.51)

where k = 2πν/c, κ = (2π/c)
√
ν2
0 − ν2, and n = 1.49 is the refractive index

of the paraffin. In addition to the above phase change calculated, there is
a contribution due to the passage from forbidden to allowed propagation.
These contributions have been calculated in a variety of situations, although
not for the intermediate type geometry (nonrectangular, finite slits) of this
experiment. We therefore assumed that an additional phase change occurred,
that it went smoothly from zero to its full value (like a hyperbolic tangent).
We let the actual value of the phase shift be one of the parameters for the
curve fitting.

The resulting data fit (with net phase change close to 2π/5) is shown in
the figure. It is the associated curve the derivative of which is used in the
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calculation of group velocity. As indicated, the figure also displays (as circles)
a calculation of the group-delay that does not depend on any curve-fitting
assumptions. For both the minimalist and the “informed” calculations and
for frequencies below the cutoff, the group delay fell convincingly below that
associated with the velocity of light.

When the delay measurements were made by using pulse modulation (like
a “step” function in which the transition has a duration of about 10 ns and
the spectral width ∼ 100 MHz), the experimental setup of Fig. 12.22 turned
out to be not very suitable when the measurements were made by varying d
and D (the sum d + D kept constant). In fact, standing wave effects, which
gave rise to the small undulation shown in Fig. 12.23, became amplified in the
group-delay data since they are related to the derivative of the phase delay.

In addition, there was a modification in the results of delay measurements
because of the so-called speed-up effect. This was due to the variation of the
transmission coefficient in the frequency interval corresponding to the spectral
width of the pulse. In fact, the barrier acted as a high-pass filter enhancing
the transmission of the high-frequency components of the signal. This effect
could be evaluated by noting that the transmitted pulse turned out to be
shifted toward the high-momentum values by an amount given by [46]

Δk

k
=

(Δsk)2

2
c2

ω

∂

∂ω
lnT 1/2 , (12.52)

where Δsk is the spectral width in momentum space. Since (∂/∂ω) lnT 1/2

is τz, that is, the imaginary component of the delay, and assuming Δk/k ≈
Δt/t (t being the duration of the complete travel in the experiment), we ob-
tained an enhancement given by

δτ =

[
t

2

(
Δω

ω

)2

ω

]
τz . (12.53)

For the considered frequencies we estimated the factor in parentheses to be of
the order of 10−2 so that the measured delay should be shortened by about
1% of the imaginary component. This, in turn, could be assumed to be nearly
coincident with the semiclassical time given by

τs =
2πν
c2

L

κ2
, (12.54)

where the quantity κ2 is obtained from amplitude measurements. Some results
are reported in Table 12.1, together with the corresponding τs which are in
rather good agreement with the theoretical value of κ. Therefore, even if
appreciable, this interesting effect does not represent an important deviation
from the expected results.

More reliable results of group delay were also obtained by measuring, using
a lock-in amplification technique, the phase delay of a sinusoidal modulation
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Table 12.1. Attenuation constant κ2 and semiclassical traversal time τs as deduced
from amplitude measurements. The variation Δτφ of the real delay time τφ with
respect to the free-motion time L/c, as measured for L = 3 cm by modulating
at 10 MHz, is compared with the value deduced from phase measurements of the
carrier (best fit procedure). The reported error is consistent with the resolution of
the lock-in amplifier

ν κ2 τs Δτφ = τφ − L/c Δτφ
(GHz) (cm−1) (ps) lock-in measurements. (ps) phase measurements. (ps)

9.01 — — −97 ± 55 ∼ −48
9.30 0.84 235 — ∼ −46
9.42 0.71 279 — ∼ −43
9.82 0.575 357 — ∼ −38

11.0 — — 186 ± 55 ∼ 171

which directly supplied the group delay or, more exactly, the variation Δτφ
with respect to the free motion time L/c (see Table 12.1).

The modulation frequency νm was fixed at 10 MHz so that the spectral
width of the signal was only 20 MHz. The sensitivity of this measurement was
not high, since a delay of 100 ps corresponds to a dephasing of only 0.36◦.
Each result was obtained by a best fit of the data, relative to measurements
of delay time vs the gap width d, and was affected by a large error as reported
in Table 12.1 for only two frequency values. This was due to the complexity of
the procedure. Nevertheless, we can conclude that the results obtained in this
way are in agreement with those derived from the phase-delay measurements
reported in the last column of Table 12.1.

12.4 Tunneling Time in Frustrated Total Reflection

Let us now consider two microwave experiments that deal with tunneling time
in the presence of frustrated total reflection.

The first experiment consists in measuring the delay in a gap of a few
centimeters between two paraffin prisms when total reflection takes place in
the first prism and evanescent waves originate in the gap. The experimental
setup is shown in Fig. 12.25.

In addition to two paraffin prisms (refractive index n = 1.49, angles: 30◦,
60◦, 90◦), it consists of two horn antennas, with relative detectors, one as
launcher and the other as receiver. For angles of incidence i � 60◦ greater
than the critical angle i0 = sin−1(1/n) � 42◦, total reflection takes place, and
evanescent waves, moving along the x-direction and amplitude attenuating in
z-direction, originate in the gap. In this way, the gap acts like a quantum-
mechanical potential barrier, and the traversal time can be identified with
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Fig. 12.25. Experimental setup consisting of two paraffin prisms separated by a
gap, the width of which is d. Two horn antennas, the launcher and the receiver,
allow accurate phase measurements by means of a slotted waveguide, in which the
reference signal is combined with the signal picked up by the receiver. The reference
axes for the theoretical analysis are also indicated

the tunneling time [47, 48]. For frequencies around 10 GHz (the wavelength
λ � 3 cm), we first performed phase-delay measurements from which the group
delay could be deduced. For this purpose, after the receiver horn, we placed a
slotted waveguide in which the signal picked up was combined with a reference
signal derived from the generator. Phase measurements, as a function of the
gap width d, were carried out by detecting a probe position corresponding to
a minimum of the amplitude of the resulting signal, according to a procedure
described in Sect. 12.3. We repeated this kind of measurement for several
frequency values in the ν =9–10 GHz range for gap widths from zero to d = 2
cm (the strong attenuation prevented our obtaining reliable results for larger
values) [49].

The phase delays τph obtained were very small, limited within the 4−6 ps
range, and slightly dependent on the frequency, as shown in Fig. 12.26. The
group delay could be deduced from the phase delay according to the relation
τgr = τph + ν(dτph/dν). However, the relative errors in the τph data made an
evaluation of the derivative of τph uncertain. On the other hand, according
to the theoretical analysis reported in Sect. 12.1.1, the term containing the
phase-delay variation turned out to be nearly equal to the phase delay and,
consequently, the group delay tended to zero in this case.

Confirmation of this result was obtained by direct group-delay measure-
ments, which were carried out with pulse modulation of the carrier, rather
than with monochromatic microwaves as in the phase-delay measurements.
In view of the smallness of the quantity being measured, it is very important
to check that the pulse shape (width, rise and fall-time) does not appreciably
change when passing through the barrier; otherwise, the group-delay loses its
meaning. Moreover, the geometry of the experimental setup had to be care-
fully controlled. Reliable results were obtained with pulse modulation, ∼ 80
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Fig. 12.26. Phase-delay results for several frequency values, obtained by varying
the gap width from zero to d = 2 cm and maintaining constant s, the position of
the receiver horn relative to the movable prism

ns width, rise and fall time of few nanoseconds, frequency repetition of ∼100
kHz, by comparing the input and the output pulses with a two-channel dig-
ital real-time oscilloscope, the time resolution of which was down to a few
picoseconds. After almost compensating for the delay due to the travel before
and after the gap, we measured a delay of 134 ± 8 ps when a gap of ∼ 2 cm
was filled with a paraffin slab. The delay decreased to 87 ± 7 ps when the
gap was empty. We thus obtained a net advance in time of 47 ± 15 ps. Since
the increase of the path ray in the paraffin was ∼ 1 cm (see Fig. 12.25), a
value which implies a delay of ∼ 50 ps, we concluded that the group delay
in the gap was of the order of a few picoseconds, thus demonstrating a clear
superluminal behavior, in both the phase and group velocities.

In terms of electromagnetic waves, an analysis of what occurred in the
experiment described above was made by considering a system formed by two
half-spaces, limited by plane-parallel boundaries, at z = 0 and z = d, re-
spectively, filled with a homogeneous and non dispersive medium of refractive
index n, and separated by a vacuum gap. As described in Sect. 12.1.1, from a
comparison of the impinging and transmitted pulses, it is possible to evaluate
the time taken by the pulse to travel across the gap. Here, we limit ourselves
to reporting the most significant results. If the impinging wave is a δ-like func-
tion of the time, picked on the wave front that at t = 0 passes through the
origin O in Fig. 12.6, the transmitted pulse at z = d can be simply expressed
analytically, for Γ � γ, as [32, 49]

Et �
2c
nγd

exp(− 2ct
nγd)

1 + exp(−πct
Γd )

(12.55)

where Γ =
√
n2α2 − 1 and (ω/c)Γ is the attenuation constant of the evanes-

cent wave along the z-coordinate in the gap. Equation (12.55) tells us that our
system behaves approximately like a low-pass filter [50], the time constant of
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which is τ = nγd/2c. It is thus expected that the delay of a signal crossing the
gap should be of the order of τ . More precisely, the delay coincides consider-
ably with the time-constant difference τ−τ ′, where τ ′ = Γd/πc. Since τ and τ ′

are typically of the same order of magnitude (tens of picoseconds), we obtain
very small delays. In Fig. 12.27 a general view of the propagation of a pulse
impinging on the gap is shown, with its reflected part and its transmitted part
through the gap.
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Fig. 12.27. General view of the propagation of a Gaussian pulse (half-width in
time is 0.2) for an angle of incidence on the gap i � 43◦, γ = 0.73, Γ = 0.16, taking
the light velocity to be c = 1. The impinging and reflected pulses, are shown in
(a), the field in the gap, in (b), the transmitted pulse, in (c). We note that, while
in (a) and (c) the pulse velocity is nearly equal to the unity, in (b) the velocity
is approximately five times greater. This value is demonstrated by the small delay
(∼ 0.2) at the end of the gap. We note, however, that with these parameter values
(especially c = 1), the deformation of the pulse is not negligible
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What emerges from this three-dimensional representation is that, while the
velocity is unitary (Δt ≈ 1 for Δz = 1 corresponding to a velocity c/nγ ≈ 1
before and after the barrier), the velocity during the traversal of the barrier
is indubitably higher. This is because on this scale the delay for travelling a
unitary gap width (Δz = 1) is much smaller (say,Δt ≈ 0.2, which corresponds
to a velocity ∼ 5c).

More accurate results can be obtained by properly integrating (12.55),
in its exact expression, over time. This can make it possible to obtain the
shape of the output in the case that the input signal is, for example, a step
function or a ramp. The results are reported in Fig. 12.28, and show that the
delay varies from 36 ps for Γ = 0.1 (that is in proximity of the limit angle
of incidence i0 � 42◦) to nearly zero for Γ = 0.8, which corresponds to the
experimental situation in which we obtained a delay of few picoseconds.

A detailed analysis of the propagation inside the forbidden region is re-
ported in [51] and [52]. A different approach, based on the path integral
method, is given in [53] and [54].

The second experiment consisted of measuring the shift of the microwave
beam outgoing from the launcher and traversing the gap of a few centimeters
between the two paraffin prisms, still in total reflection condition. This ex-
periment is an extension to the microwave range of an analogous experiment
already made in the optical range [48]. With reference to the inset in Fig. 12.29
(incidence and critical angles ∼ 60◦ and 42◦, respectively) we have quantity
D—which is a measure of the traversal time—as twice displacement δ. The
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Fig. 12.28. Group-delay results (squares) computed by properly integrating (12.55)
for several values of Γ and d = 2 cm. The inset shows the determination of the delay
in the case that the input signal (as well as the output) is a ramp
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Fig. 12.29. Traversal time results as a function of the gap width d between the
two paraffin prisms. The experimental setup is shown in the inset. The microwave
beam at 9.33 GHz, in conditions of frustrated total internal reflection, exhibits a
shift Δs, in the transmitted part through the gap, which is related to the traversal
time. The curves correspond to the real part of the tunneling time as given by the
theoretical model of Sect. 12.1.2 for a = 35 ns−1 (continuous line), and a = (35−i2.5)
ns−1(shaded line)

latter could be determined by measuring the shift Δs of the beam while the
gap was varied from zero to d. If we put this into a formula, we have

D = 2δ = 2(d sin i−Δs). (12.56)

Once the shift δ is known, we could determine the traversal time as [48]

τ =
nD

c sin i
(12.57)

where n = 1.49 is the refractive index of the prisms and c is the light velocity
in vacuum. In Fig. 12.29 we report results of τ as a function of d as they
resulted from the measurements. We note that, in spite of a nonnegligible
uncertainty (mainly due to the uncertainty in the determination of Δs) in
determining the duration of the process, the data exhibit a peak as predicted
by the theoretical model described in Sect. 12.1.2. In the same figure we also
report the curves as given by the theoretical model (see (12.18) and (12.19)),
where the velocity is given, in this case, by v = c/

√
(sin i)2n2 − 1. The value

of a which best fit the experimental data is between 30 and 35 ns−1. A small
imaginary part, say b = −2.5 ns−1, was also admissible. While confirming the
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data previously obtained, these results seem to give further confirmation of
the validity of the stochastic model in relation to tunneling processes.

12.5 Concluding Remarks

On the basis of the experiments reported here, we can conclude that the
optical tunneling (at microwave scale) is a useful method for investigating
tunneling processes. Since the wave equations which govern the waves evo-
lution are formally equal to those related to quantum-mechanical particles,
optical tunneling can be usefully utilized for simulating quantum tunneling.
It therefore represents a good observatory for investigating processes that, in
quantum mechanics, are difficult to observe directly.

However, there are some important differences. The first is due to the fact
that measurements are always invasive in quantum-mechanical systems, while
in optical tunneling, when the system is macroscopic (as in the microwave
experiments here presented), measurements are noninvasive.

Another difference is related to the velocity of the processes. Within the
electromagnetic framework, the wave equations are relativistic, while quan-
tum particles seldom need the relativistic formalism. Indeed, they are usually
described by the Schrödinger equation, rather than by the Klein–Gordon or
Dirac ones.

A third difference is connected to the different timescale in which the
superluminal effects can be observed. This timescale is confined within a range
that is accessible for microwave scale and photon tunneling, while it appears
to be rather inaccessible even for light relativistic particles, such as electrons,
for which the time scale is of the order of 10−21 s.

The fast behavior observed in optical tunneling is attributed to group
velocity. The question as to whether the superluminality can be extended to
signal velocity is still open, and needs further investigations.
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Phys. Rev. A 62, 023808 (2000) 360
27. W. Heitmann, G. Nimtz: Phys. Lett. A 196, 154 (1994) 361
28. M. Mojhedi, E. Schamiloglu, F. Hegeler, K.J. Malloy: Phys. Rev. E 62, 5758

(2000) 362
29. A. Enders, G. Nimtz: Phys. Rev. E 48, 632 (1993); J. Phys. (Paris) I 3, 1089

(1993) 363
30. A.M. Steinberg, P.G. Kwiat, R.Y. Chiao: Phys. Rev. Lett. 71, 708 (1993) 363
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13.1 Introduction

The two-state vector formalism of quantum mechanics is a time-symmetrized
approach to standard quantum theory particularly helpful for the analysis
of experiments performed on pre- and post-selected ensembles. It allows to
see numerous peculiar effects which naturally arise in this approach. In par-
ticular, the concepts of “weak measurements” (standard measurements with
weakening of the interaction) and “weak values” (the outcomes of weak mea-
surements) reveal a very unusual but consistent picture. Recently, more and
more effects are viewed as manifestations of weak measurements and more
and more weak measurement experiments have been performed. The polemic
about the validity of the approach and the meaning of its concepts never
stopped. The number of papers written on the subject almost doubled since
publication of the first version of the review. The current review does not ex-
plain in details the new results, but it puts the development of the approach
in the proper context and provides citations for further reading.

13.2 Descriptions of Quantum Systems

13.2.1 The Quantum State

In the standard quantum mechanics, a system at a given time t is described
completely by a quantum state

|Ψ〉 , (13.1)

defined by the results of measurements performed on the system in the past
relative to the time t. (It might be that the system at time t is not described

Y. Aharonov and L. Vaidman: The Two-State Vector Formalism: An Updated Review,

Lect. Notes Phys. 734, 399–447 (2008)

DOI 10.1007/978-3-540-73473-4 13 c© Springer-Verlag Berlin Heidelberg 2008



400 Y. Aharonov and L. Vaidman

by a pure quantum state, but by a mixed state (density matrix). However,
we can always assume that there is a composite system including this system
which is in a pure state.) The status of a quantum state is controversial: there
are many papers on reality of a quantum state and numerous interpretations
of this “reality.” However, it is noncontroversial to say that the quantum state
yields maximal information about how this system can affect other systems
(in particular, measuring devices) interacting with it at time t. Of course, the
results of all measurements in the past, or just the results of the last complete
measurement, also have this information, but these results include other facts
too, so the quantum state is the most concise information about how the
quantum system can affect other systems at time t.

The concept of a quantum state is time-asymmetric: it is defined by the re-
sults of measurements in the past. This fact by itself is not enough for the
asymmetry: in classical physics, the state of a system at time t defined by the
results of the complete set of measurements in the past is not different from
the state defined by the complete measurements in the future. This is because
for a classical system the results of measurements in the future are defined by
the results of measurements in the past (and vice versa). In quantum mechan-
ics this is not so: the results of measurements in the future are only partially
constrained by the results of measurements in the past. Thus, the concept
of a quantum state is genuinely time-asymmetric. The question arises: does
the asymmetry of a quantum state reflects the time asymmetry of quantum
mechanics, or it can be removed by reformulation of quantum mechanics in a
time-symmetric manner?

13.2.2 The Two-state Vector

The two-state vector formalism of quantum mechanics (TSVF) originated in
a seminal work of Aharonov, Bergmann, and Lebowitz (ABL) [1] removes this
asymmetry. It provides a time-symmetric formulation of quantum mechanics.
A system at a given time t is described completely by a two-state vector

〈Φ| |Ψ〉 , (13.2)

which consists of a quantum state |Ψ〉 defined by the results of measurements
performed on the system in the past relative to the time t and of a backward
evolving quantum state 〈Φ| defined by the results of measurements performed
on this system after the time t. Again, the status of the two-state vector
might be interpreted in different ways, but a noncontroversial fact is that it
yields maximal information about how this system can affect other systems
(in particular, measuring devices) interacting with it at time t.

The description of the system with the two-state vector (13.2) is clearly
different from the description with a single quantum state (13.1), but in both
cases we claim that “it yields maximal information about how this system
can affect other systems (in particular, measuring devices) interacting with it
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at time t.” Does it mean that the TSVF has different predictions than the
standard quantum approach? No, the two formalisms describe the same theory
with the same predictions. The difference is that the standard approach is time
asymmetric and it is assumed that only the results of the measurements in
the past exist. With this constraint, |Ψ〉 indeed contains maximal information
about the system at time t. The rational for this approach is that if the results
of the future measurements relative to the time t exist too, then “now” is
after time t and we cannot return back in time to perform measurements at t.
Therefore, taking into account results of future measurements is not useful. In
contrast, the TSVF approach is time symmetric. There is no preference to the
results of measurements in the past relative to the results of measurements
in the future: both are taken into account. Then, there is more information
about the system at time t. The maximal information (without constraints)
is contained in the two-state vector 〈Φ| |Ψ〉.

If the TSVF has the same predictions as standard quantum mechanics,
what is the reason to consider it? And what about the argument that when
the results of future measurements are known it is already too late to make
measurements at time t? How might the two-state vector be useful? The an-
swer to the first question is that it is important to understand the time sym-
metry of nature (described by quantum mechanics). The time asymmetry of
the standard approach might be solely due to the usage of time-asymmetric
concepts. The answer to the second question is that there are many situa-
tions in which we want to know how a system affected other systems in the
past. The TSVF proved to be particularly useful after introduction of weak
measurements [2, 3, 4] which allowed to see that systems described by some
two-state vectors can affect other system at time t in a very peculiar way.
This has led to the discovery of numerous bizarre effects [5, 6, 7, 8]. It is
very difficult to understand these effects in the framework of standard quan-
tum mechanics; some of them can be explained via a miraculous interference
phenomenon known as super-oscillations [9, 10].

13.2.3 How to Create Quantum Systems Corresponding
to Various Complete Descriptions?

The maximal complete description of a quantum system at time t is a two-
state vector (13.2). We will name the system which has such a description
as pre- and postselected. (Again, it might be that at time t the system is not
described by a “pure” two-state vector. However, we can assume that there
is a composite system including this system which is described by a two-
state vector.) In some circumstances, the system might have only a partial
description. For example, if time t is “present” and the results of the future
measurements do not exist yet, then at that time, the system is described only
by a usual forward evolving quantum state (13.1): the preselected system.
Later, when the results of the future measurements will be obtained, the
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description will be completed to the form (13.2). It is also possible to arrange
a situation in which, until some measurements in the future, the complete
description of the system at time t is the backward evolving quantum state
〈Φ|: the postselected system. We will now explain how all these situations can
be achieved.

Single Forward-Evolving Quantum State
In order to have now a system the complete description of which at time

t is a single quantum state (13.1), there should be a complete measurement
in the past of time t and no measurement on the system after time t, see
Fig. 13.1 a. The system in the state |Ψ〉 is obtained when a measurement of
an observable A at time t1 is performed, t1 < t, obtaining a specific outcome
A = a such that the created state |a〉 performs unitary evolution between t1
and t governed by the Hamiltonian H ,

U(t1, t) = e
−i ∫ t

t1
Hdt

, (13.3)

to the desired state:
|Ψ〉 = U(t1, t) |a〉 . (13.4)

The time “now,” tnow should either be equal to the time t, or it should be
known that during the time period [t, tnow] no measurements have been per-
formed on the system. The state |Ψ〉 remains to be the complete description
of the system at time t until the future measurements on the system will be
performed yielding additional information.
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Fig. 13.1. Description of quantum systems: (a) pre-selected, (b) pre- and postse-
lected, (c) postselected, and (d) generalized pre- and postselected
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The Two-State Vector
In order to have now a system the complete description of which at time

t is a two-state vector (13.2), there should be a complete measurement in the
past of time t and a complete measurement after the time t, see Fig. 13.1b.
In addition to the measurement A = a at time t1, there should be a complete
measurement at t2, t2 > t, obtaining a specific outcome B = b such that the
backward time evolution from t2 to t leads to the desired state

〈Φ| = 〈b| U †(t, t2) . (13.5)

The time “now”, tnow is clearly larger than t2. The two-state vector 〈Φ| |Ψ〉
is the complete description of the system at time t starting from the time t2
and forever.

A Single Backward-Evolving Quantum State
We have presented above a description of quantum systems by a single

forward-evolving quantum state (13.1) and by a two-state vector (13.2). It
is natural to ask: Are there systems described by a single backward-evolving
quantum state? The notation for such a state is

〈Φ| . (13.6)

A measurement of B at time t2, even in the case it yields the desired outcome
B = b, is not enough. The difference between preparation of (13.1) and (13.2)
is that at present, t, the future of a quantum system does not exist (the future
measurements have not been performed yet), but the past of a quantum sys-
tem exists: it seems that even if we do not know it, there is a quantum state
of the system evolving towards the future defined by the results of measure-
ments in the past. Therefore, in order to obtain a quantum system described
by a backward-evolving quantum state (13.2), in addition to the postselection
measurement performed after time t, we have to erase the past.

How to erase the past of a quantum system? A complete measurement
before the time t certainly partially erases the information which the system
had before the measurement, but it also creates the new information: the re-
sult of this measurement. It creates another quantum state evolving forward
in time, and this is, really, what we need to erase. We have to achieve the
situation in which no information arrives from the past. It seems impossible
given the assumption that all the past is known. However, if we perform a
measurement on a composite system containing our system and an auxiliary
system, an ancilla, then it can be done, see Fig. 13.1c. Performing a Bell-type
measurement results in one of a completely correlated states of the system
and the ancilla (the Einstein-Podolsky-Rosen (EPR)-type state). In such a
state, each system has equal probability to be found in any state. However,
the measurement on one system fixes the state of the other, so, in addition to
the Bell-type measurement we need to “guard” the ancilla such that no mea-
surement could be performed on it until now. Again, the complete description
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of a quantum system by a single (this time backward-evolving) quantum state
can be achieved only for a period of time until the measurements on the ancilla
would fix the forward-evolving quantum state for the system.

The backward evolving state is a premise not only of the two-state vector
formalism, but also of “retrodictive” quantum mechanics [11, 12, 13, 14, 15],
which deals with the analysis of quantum systems based on a quantum mea-
surement performed in the future relative to the time in question. It is also rel-
evant to “consistent histories” and “decoherent histories” approaches [16, 17].

13.2.4 The Generalized Two-State Vector

The descriptions we described above correspond to an “ideal” case. We have
assumed that complete measurements have been performed on the system in
the past, or in the future or both. The philosophical question is this: can we
assume that going sufficiently far away to the past, far away to the future
and far in the sense of considering composite systems larger and larger, at the
end there always be a complete description in the form of a two-state vector.
Usually we do put constraints on how far we go (at least regarding the future
and the size of the system). In constructing the situation in which a system
is described by a backward-evolving quantum state only, we already limited
ourselves to a particular system instead of being satisfied by the correct claim
that our system is a part of a composite system (which includes also the an-
cilla) which does have forward-evolving quantum state. As in the standard
approach, limiting our analysis to a particular system leads to descriptions
with mixed states. There are situations in which the forward-evolving state
is a mixed state (the system is correlated to an ancilla) and the backward-
evolving state is another mixed state (the system correlated to another an-
cilla). Although the generalization to the mixed states is straightforward, it is
not obvious what is its most convenient form. For a powerful, but somewhat
cumbersome formalism, see [18]. However, there is a particular case which is
not too difficult to describe. It corresponds to another “pure” two-state vector
description: generalized two-state vector.

Generalized two-state vector [4] is the name for the superposition of two-
state vectors ∑

i

αi〈Φi| |Ψi〉 . (13.7)

In general, the sets {|Ψi〉}, {〈Φi|} need not be orthogonal. Then, the nor-
malization should be chosen consistently, although it is not very important
since in main applications of this concept the normalization does not affect
anything.

For simplicity, we will consider the case of zero free Hamiltonian for the
system and for the ancilla. In order to obtain the generalized two-state vector
(13.7) we have to prepare at t1 the system and the ancilla in a correlated state∑

i αi|Ψi〉|i〉, where {|i〉} is a set of orthonormal states of the ancilla. Then we
have to “guard” the ancilla such that there will be no measurements or any
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other interactions performed on the ancilla until the postselection measure-
ment of a projection on the correlated state 1/

√
N

∑
i |Φi〉|i〉, see Fig. 13.1d.

If we obtain the desired outcome, then the system is described at time t by
the generalized two-state vector (13.7).

13.3 Ideal Quantum Measurements

13.3.1 Von Neumann Measurements

In this section I shall discuss how a quantum system characterized by a certain
description interacts with other systems. Some particular types of interactions
are named measurements and the effect of these interactions characterized as
the results of these measurements. The basic concept is an ideal quantum
measurement of an observable C. This operation is defined for preselected
quantum systems in the following way:

If the state of a quantum system before the measurement was
an eigenstate of C with an eigenvalue cn then the outcome of the
measurement is cn and the quantum state of the system is not changed.

The standard implementation of the ideal quantum measurement is modeled
by the von Neumann Hamiltonian [19]:

H = g(t)PC , (13.8)

where P is the momentum conjugate to the pointer variable Q, and the nor-
malized coupling function g(t) specifies the time of the measurement inter-
action. The outcome of the measurement is the shift of the pointer variable
during the interaction. In an ideal measurement the function g(t) is nonzero
only during a very short period of time, and the free Hamiltonian during this
period of time can be neglected.

13.3.2 The Aharonov–Bergmann–Lebowitz Rule

For a quantum system described by the two-state vector (13.2), the probability
for an outcome cn of an ideal measurement of an observable C is given by [1, 4]

Prob(cn) =
|〈Φ|PC=cn |Ψ〉|2∑
j |〈Φ|PC=cj |Ψ〉|2

. (13.9)

For a quantum system described by a generalized two-state vector (13.7)
the probability for an outcome cn is given by [4]

Prob(cn) =
|
∑

i αi〈Φi|PC=cn |Ψi〉|2∑
j |

∑
i αi〈Φi|PC=cj |Ψi〉|2

. (13.10)
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Another important generalization of the formula (13.9) is for the case in
which the postselection measurement is not complete and therefore it does
not specify a single postselection state 〈Φ|. Such an example was recently
considered by Cohen [20] in an (unsuccessful [21]) attempt to find constraints
to the applicability of the ABL formula. In this case, the postselection mea-
surement is a projection on a degenerate eigenvalue of an observable B = b.
The modified ABL formula is [21]:

Prob(cn) =
‖PB=bPC=cn |Ψ〉‖2

∑
j ‖PB=bPC=cj |Ψ〉‖2

. (13.11)

This form of the ABL formula allows to connect it to the standard formalism
of quantum theory in which there is no post-selection. In the limiting case
when the projection operator PB=b is just the unity operator I, we obtain the
usual expression:

Prob(cn) = ||PC=cn |Ψ〉||2 . (13.12)

13.3.3 Three-Boxes Example

Consider a particle which can be located in one out of three boxes. We denote
the state of the particle when it is in box i by |i〉. At time t1 the particle is
prepared in the state

|Ψ〉 =
1√
3
(|1〉 + |2〉 + |3〉) . (13.13)

At time t2 the particle is found to be in the state

|Φ〉 =
1√
3
(|1〉 + |2〉 − |3〉) . (13.14)

We assume that in the time interval [t1, t2] the Hamiltonian is zero. Therefore,
at time t, t1 < t < t2, the particle is described by the two-state vector

〈Φ| |Ψ〉 =
1
3
(〈1| + 〈2| − 〈3|) (|1〉 + |2〉 + |3〉) . (13.15)

Probably the most peculiar fact about this single particle is that it can be
found with certainty in two boxes [4]. Indeed, if at time t we open box 1, we
are certain to find the particle in box 1; and if we open box 2 instead, we are
certain to find the particle in box 2. These results can be obtained by straight-
forward application of the ABL formula (13.9). Opening box i corresponds to
measuring the projection operator Pi = |i〉〈i|. The corresponding operators
appearing in (13.9) are

PPi=1 = |i〉〈i|, PPi=0 =
∑

j �=i
|j〉〈j| (13.16)
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Therefore, the calculation of the probability to find the particle in box 1 yields:

Prob(P1 = 1) =
|〈Φ|1〉〈1|Ψ〉|2

|〈Φ|1〉〈1|Ψ〉|2 + |〈Φ|2〉〈2|Ψ〉 + 〈Φ|3〉〈3|Ψ〉|2 =
| 13 |2

|13 |2 + |0|2
= 1 .

(13.17)
Similarly, we obtain Prob(P2 = 1) = 1. Note, that if we open both box 1 and
box 2, we might not see the particle at all.

This example can be generalized to the case of a large number of boxes N .
A single particle described by a two-state vector

1
N

(〈1| + 〈2| + ...−
√
N − 2〈N |) (|1〉 + |2〉 + ...+

√
N − 2|N〉) . (13.18)

This single particle is, in some sense, simultaneously in N−1 boxes: whatever
box is opened (except the last one) we are certain to find the particle there.

Recently, we found that the particle is simultaneously in several boxes even
in a more robust sense [22]. We cannot find it simultaneously in all boxes if
we look at all of them, but a single photon can! We found that a photon will
scatter from our pre- and postselected particle, as if there were particles in all
boxes.

The analysis of the three-boxes example has interesting features also in
the framework of the consistent histories approach [23, 24, 25]. On the other
hand, it generated significant controversies. The legitimacy of counterfactual
statements were contested, see discussion in Sect 5.4, the Kastner criticism
[26] and Vaidman’s reply [27], and it was claimed by Kirkpatrick [28] that the
three-boxes example does not exhibit genuine quantum paradoxical feature
because it has a classical counterpart. Very recently Ravon and Vaidman [29]
showed that Kirkpatrick’s proposal fails to mimic quantum behavior and that
the three-box example is one of not too many classical tasks which can be done
better using quantum tools. (We could not see a refutation of this statement
in Kirkpatrick’s reply [30].) This is the paradoxical feature of the three-box
experiment which was overlooked by Leavens et al. [31] who considered varia-
tions of the three-box experiment with modified pre- and postselected states.

Recently, a setup equivalent to the three-box example was presented as a
novel counterfactual computation method [32]. The analysis of this proposal in
the framework of the two-state vector formalism [33] shows that one cannot
claim that the computer yields the result of computation without actually
performing the computation and therefore, the proposal fails to provide coun-
terfactual computation for all possible outcomes as it was originally claimed.

13.3.4 The Failure of the Product Rule

An important difference between pre- and postselected systems and prese-
lected systems only is that the product rule does not hold [34]. The product
rule, which does hold for preselected quantum systems is that if A = a and
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B = b with certainty, then it is certain that AB = ab. In the three-boxes case
we know with certainty that P1 = 1, P2 = 1. However, P1P2 = 0.

Another example of this kind in a which measurement in one place affects
the outcome of a measurement in another place is a pre- and postselected
pair of separate spin- 1

2 particles [35]. The particles are prepared, at time t1,
in a singlet state. At time t2 measurements of σ1x and σ2y are performed
and certain results are obtained, say σ1x = 1 and σ2y = 1, i.e., the pair is
described at time t, t1 < t < t2, by the two-state vector

1√
2
〈↑x | 〈↑y | (| ↑z〉| ↓z〉 − | ↓z〉| ↑z〉) . (13.19)

If at time t a measurement of σ1y is performed (and if this is the only measure-
ment performed between t1 and t2), then the outcome of the measurement is
known with certainty: σ1y(t) = −1. If, instead, only a measurement of σ2x is
performed at time t, the result of the measurement is also certain: σ2x(t) = −1.
The operators σ1y and σ2x obviously commute, but nevertheless, measuring
σ2x(t) clearly disturbs the outcome of the measurement of σ1y(t): it is not
certain anymore.

Measuring the product σ1yσ2x, is, in principle, different from the mea-
surement of both σ1y and σ2x separately. In our example, the outcome of
the measurement of the product is certain, the ABL formula (13.9) yields
σ1yσ2x = −1. Nevertheless, it does not equal the product of the results which
must come out of the measurements of σ1y and σ2x when every one of them
is performed without the other.

Note measurability of the product σ1yσ2x using only local interactions.
Indeed, we may write the product as a modular sum, σ1yσ2x = (σ1y +
σ2x)mod4 − 1. It has been shown [36] that nonlocal operators such as
(σ1y + σ2x)mod4 can be measured using solely local interactions.

Hardy [37] analyzed another very spectacular example in which an electron
and a positron are found with certainty if searched for in a particular place,
but, nevertheless, if both are searched simultaneously, there is certainty not
to find them together. Again, the failure of the product rule explains this
counterintuitive situation and the far reaching conclusions of Hardy’s paper
seem not to be warranted [34].

The two spin- 1
2 particles example with a small modification of omitting the

measurement at time t2 performed on a second particle, but instead, “guard-
ing” it starting from time t1 against any measurement, is a demonstration of
obtaining a quantum system described only by a backward-evolving quantum
state 〈↑x |. The probability distribution for outcomes of spin-component mea-
surements performed at time t is identical to that of a particle in a preselected
state | ↑x〉. Note that for quantum systems which are postselected only, the
product rule does hold.

Recently [38] it has been shown that pre- and postselection allows an-
other related peculiar feature: “a posteriori” realization of super-correlations



13 The Two-State Vector Formalism: An Updated Review 409

maximally violating the CHSH bound, which have been termed as Popescu–
Rohrlich boxes [39].

13.3.5 Ideal Measurements Performed on a System Described
by Generalized Two-State Vector

Another modification, replacing the measurements at t2 on two particles by
measurement of a nonlocal variable such as a Bell operator on both particles
and guarding the second particle between t1 and t2 produces a generalized
two-state vector for the first particle. Such particles might have a peculiar
feature that the outcome of spin component measurements is certain in a
continuum of directions. This is a surprising result because the preselected
particle might have definite value of spin component at most in one direction
and the particle described by two-state vector will have definite results of spin
component measurements in two directions: one defined by preselection and
one defined by postselection (the directions might coincide). For example [4],
the particle described by a generalized two-state vector

cosχ〈↑z | | ↑z〉 − sinχ〈↓z | | ↓z〉 , χ ∈
(
0,
π

2

)
, (13.20)

will yield the outcome ση = 1 for the cone of directions η̂ making angle θ with
the z axes such that θ = 4 arctan

√
tanχ. This can be verified directly using

the formula (13.10), but we will bring another argument for this result below.
The generalized two-state vector is obtained when there is a particular

result of the nonlocal measurement at time t2. It is interesting that we can
construct a particular measurement at time t2 such that whatever the outcome
will be there will be a cone of directions in which the spin has a definite value.
These cones intersect in general in four lines. It can be arranged that they
will “touch” on, say x-axis and intersect in y- and z-axes. Then, in all cases
we will be able to ascertain the value of σx, σy, and σz of a single particle [5].

The problem was also analyzed in the framework of the standard approach
[40, 41] and after coining the name “The Mean King Problem” continued to be
a topic of an extensive analysis. It has been generalized to the spin-1 particle
[42] and to a higher dimentional case [43, 44]. The research continues until
today [45, 46, 47, 48, 49, 50]. Moreover, today’s technology converted from
gedanken quantum game to a real experiment. Schulz et al. [51] performed
this experiment with polarized photons (instead of spin- 1

2 particles).

13.4 Weak Measurements

13.4.1 Introduction

The most interesting phenomena which can be seen in the framework of the
TSVF are related to weak measurements [3]. A weak measurement is a stan-
dard measuring procedure (described by the Hamiltonian (13.8)) with weak-
ened coupling. In an ideal measurement, the initial position of the pointer
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Q is well localized around zero and therefore the conjugate momentum P
has a very large uncertainty which leads to a very large uncertainty in the
Hamiltonian of the measurement (13.8). In a weak measurement, the initial
state of the measuring device is such that P is localized around zero with
small uncertainty. This leads, of course, to a large uncertainty in Q and there-
fore the measurement becomes imprecise. However, by performing the weak
measurement on an ensemble of N identical systems we improve the precision
by a factor

√
N and in some special cases we can obtain good precision even

in a measurement performed on a single system [2].
The idea of weak measurements is to make the coupling with the measuring

device sufficiently weak so that the change of the quantum state due to the
measurements can be neglected. In fact, we require that the two-state vector is
not significantly disturbed, i.e., neither the usual, forward-evolving quantum
state, nor the backward-evolving quantum state is changed significantly. Then,
the outcome of the measurement should be affected by both states. Indeed,
the outcome of a weak measurement of a variable C performed on a system
described by the two-state vector 〈Φ| |Ψ〉 is the weak value of C:

Cw ≡ 〈Φ|C|Ψ〉
〈Φ|Ψ〉 . (13.21)

Strictly speaking, the readings of the pointer of the measuring device will
cluster around Re(Cw). In order to find Im(Cw) one should measure the shift
in P [3].

The weak value for a system described by a generalized two-state vector
(13.7) is [4]:

Cw =
∑

i αi〈Φi|C|Ψi〉∑
i αi〈Φi|Ψi〉

. (13.22)

Next, let us give the expression for the weak value when the postselection
measurement is not complete. Consider a system preselected in the state |Ψ〉
and postselected by the measurement of a degenerate eigenvalue b of a variable
B. The weak value of C in this case is:

Cw =
〈Ψ |PB=bC|Ψ〉
〈Ψ |PB=b|Ψ〉

. (13.23)

This formula allows us to find the outcome of a weak measurement per-
formed on a preselected (only) system. Replacing PB=b by the unity operator
yields the result that the weak value of a preselected system in the state |Ψ〉
is the expectation value:

Cw = 〈Ψ |C|Ψ〉 . (13.24)

Let us show how the weak values emerge as the outcomes of weak mea-
surements. We will limit ourselves to two cases: first, the weak value of the
preselected state only (13.24) and then, the weak value of the system described
by the two-state vector (13.21).
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In the weak measurement, as in the standard von Neumann measurement,
the Hamiltonian of the interaction with the measuring device is given by
(13.8). The weakness of the interaction is achieved by preparing the initial
state of the measuring device in such a way that the conjugate momentum of
the pointer variable, P , is small, and thus the interaction Hamiltonian (13.8)
is small. The initial state of the pointer variable is modeled by a Gaussian
centered at zero:

ΨMD
in (Q) = (Δ2π)−1/4e−Q

2/2Δ2
. (13.25)

The pointer is in the “zero” position before the measurement, i.e., its initial
probability distribution is

Prob(Q) = (Δ2π)−1/2e−Q
2/Δ2

. (13.26)

If the initial state of the system is a superposition |Ψ〉 = Σαi|ci〉, then after
the interaction (13.8) the state of the system and the measuring device is:

(Δ2π)−1/4Σαi|ci〉e−(Q−ci)2/2Δ2
. (13.27)

The probability distribution of the pointer variable corresponding to the state
(13.27) is:

Prob(Q) = (Δ2π)−1/2Σ|αi|2e−(Q−ci)2/Δ2
. (13.28)

In case of the ideal measurement, this is a weighted sum of the initial proba-
bility distribution localized around various eigenvalues. Therefore, the reading
of the pointer variable in the end of the measurement almost always yields
the value close to one of the eigenvalues. The limit of weak measurement cor-
responds to Δ � ci for all eigenvalues ci. Then, we can perform the Taylor
expansion of the sum (13.28) around Q = 0 up to the first order and rewrite
the probability distribution of the pointer in the following way:

Prob(Q) = (Δ2π)−1/2Σ|αi|2e−(Q−ci)2/Δ2
=

(Δ2π)−1/2Σ|αi|2(1 − (Q− ci)2/Δ2)=(Δ2π)−1/2e−(Q−Σ|αi|2ci)2/Δ2
.(13.29)

But this is exactly the initial distribution shifted by the value Σ|αi|2ci. This is
the outcome of the measurement, in this case the weak value is the expectation
value:

Cw = Σ|αi|2ci = 〈Ψ |C|Ψ〉 . (13.30)

The weak value is obtained from statistical analysis of the readings of the
measuring devices of the measurements on an ensemble of identical quantum
systems. But it is different conceptually from the standard definition of ex-
pectation value which is a mathematical concept defined from the statistical
analysis of the ideal measurements of the variable C all of which yield one of
the eigenvalues ci.
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Now let us turn to the system described by the two-state vector (13.2).
As usual, the free Hamiltonian is assumed to be zero so it can be obtained by
preselection of |Ψ〉 at t1 and postselection of |Φ〉 at t2. The (weak) measure-
ment interaction of the form (13.8) takes place at time t, t1 < t < t2. The
state of the measuring device after this sequence of measurements is given (up
to normalization) by

ΨMD(Q) = 〈Φ|e−iPC |Ψ〉e−Q2/2Δ2
. (13.31)

After simple algebraic manipulations we can rewrite it (in the P -represent-
ation) as

Ψ̃MD(P ) = 〈Φ|Ψ〉 e−iCwP e−Δ
2P 2/2 (13.32)

+〈Φ|Ψ〉
∞∑

n=2

(iP )n

n!
[(Cn)w − (Cw)n]e−Δ

2P 2/2 .

If Δ is sufficiently large, we can neglect the second term of (13.32) when we
Fourier transform back to the Q-representation. Large Δ corresponds to weak
measurement in the sense that the interaction Hamiltonian (13.8) is small.
Thus, in the limit of weak measurement, the final state of the measuring
device (in the Q-representation) is

ΨMD(Q) = (Δ2π)−1/4e−(Q−Cw)2/2Δ2
. (13.33)

This state represents a measuring device pointing to the weak value (13.21).
Weak measurements on pre- and postselected ensembles yield, instead of

eigenvalues, a value which might lie far outside the range of the eigenvalues.
Although we have shown this result for a specific von Neumann model of
measurements, the result is completely general: any coupling of a pre- and
postselected system to a variable C, provided the coupling is sufficiently weak,
results in effective coupling to Cw. This weak coupling between a single system
and the measuring device will not, in most cases, lead to a distinguishable
shift of the pointer variable, but collecting the results of measurements on
an ensemble of pre- and postselected systems will yield the weak values of a
measured variable to any desired precision.

When the strength of the coupling to the measuring device goes to zero,
the outcomes of the measurement invariably yield the weak value. To be more
precise, a measurement yields the real part of the weak value. Indeed, the weak
value is, in general, a complex number, but its imaginary part will contribute
only a (position dependent) phase to the wave function of the measuring
device in the position representation of the pointer. Therefore, the imaginary
part will not affect the probability distribution of the pointer position which
is what we see in a usual measurement. However, the imaginary part of the
weak value also has physical meaning. It is equal to the shift of the Gaussian
wave function of the measuring device in the momentum representation. Thus,
measuring the shift of the momentum of the pointer will yield the imaginary
part of the weak value.
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The research of weak measurements continues until today. Recently, Botero
[52] noted that in some cases the pointer of the weak measurements in some
cases has narrower distribution after the weak measurement interaction than
it has before. Note also recent different ways of the analysis of the weak
measurement effect [53, 54, 55, 56, 57, 58, 59, 60].

13.4.2 Examples: Measurements of Spin Components

Let us consider a simple Stern–Gerlach experiment: measurement of a spin
component of a spin- 1

2 particle. We shall consider a particle prepared in the
initial state spin “up” in the x̂ direction and postselected to be “up” in the ŷ
direction. At the intermediate time we measure, weakly, the spin component
in the ξ̂ direction which is bisector of x̂ and ŷ, i.e., σξ = (σx + σy)/

√
2. Thus

|Ψ〉 = |↑x〉, |Φ〉 = |↑y〉, and the weak value of σξ in this case is

(σξ)w =
〈↑y|σξ|↑x〉
〈↑y|↑x〉

=
1√
2
〈↑y|(σx + σy)|↑x〉

〈↑y|↑x〉
=

√
2 . (13.34)

This value is, of course, “forbidden” in the standard interpretation where a
spin component can obtain the (eigen)values ±1 only.

An effective Hamiltonian for measuring σξ is

H = g(t)Pσξ . (13.35)

Writing the initial state of the particle in the σξ representation, and assuming
the initial state (13.25) for the measuring device, we obtain that after the
measuring interaction the quantum state of the system and the pointer of the
measuring device is

cos (π/8)|↑ξ〉e−(Q−1)2/2Δ2
+ i sin (π/8)|↓ξ〉e−(Q+1)2/2Δ2

. (13.36)

The probability distribution of the pointer position, if it is observed now
without postselection, is the sum of the distributions for each spin value. It
is, up to normalization,

Prob(Q) = cos2 (π/8)e−(Q−1)2/Δ2
+ sin2 (π/8)e−(Q+1)2/Δ2

. (13.37)

In the usual strong measurement, Δ� 1. In this case, as shown on Fig. 13.2a,
the probability distribution of the pointer is localized around −1 and +1 and
it is strongly correlated to the values of the spin, σz = ±1.

Weak measurements correspond to a Δ which is much larger than the
range of the eigenvalues, i.e., Δ � 1. Figure 13.2b shows that the pointer
distribution has a large uncertainty, but it is peaked between the eigenvalues,
more precisely, at the expectation value 〈↑x|σξ|↑x〉 = 1/

√
2. An outcome of an

individual measurement usually will not be close to this number, but it can
be found from an ensemble of such measurements, see Fig. 13.2c. Note, that
we have not yet considered the postselection.
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Fig. 13.2. Spin component measurement without post-selection: Probability distri-
bution of the pointer variable for measurement of σξ when the particle is preselected
in the state |↑x〉. (a) Strong measurement, Δ = 0.1. (b) Weak measurement, Δ = 10.
(c) Weak measurement on the ensemble of 5000 particles. The original width of the
peak, 10, is reduced to 10/

√
5000 � 0.14. In the strong measurement (a) the pointer

is localized around the eigenvalues ±1, while in the weak measurements (b) and (c)
the peak is located in the expectation value 〈↑x|σξ|↑x〉 = 1/

√
2
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In order to simplify the analysis of measurements on the pre- and postse-
lected ensemble, let us assume that we first make the postselection of the spin
of the particle and only then look at the pointer of the device that weakly
measures σξ. We must get the same result as if we first look at the outcome
of the weak measurement, make the postselection, and discard all readings
of the weak measurement corresponding to the cases in which the result is
not σy = 1. The postselected state of the particle in the σξ representation is
〈↑y| = cos (π/8)〈↑ξ| − i sin (π/8)〈↓ξ|. The state of the measuring device after
the postselection of the spin state is obtained by projection of (13.36) onto
the postselected spin state:

Φ(Q) = N
(
cos2 (π/8)e−(Q−1)2/2Δ2 − sin2 (π/8)e−(Q+1)2/2Δ2

)
, (13.38)

where N is a normalization factor. The probability distribution of the pointer
variable is given by

Prob(Q) = N 2
(
cos2 (π/8)e−(Q−1)2/2Δ2

−sin2 (π/8)e−(Q+1)2/2Δ2
)2

. (13.39)

If the measuring interaction is strong, Δ � 1, then the distribution is
localized around the eigenvalues ±1 (mostly around 1 since the pre- and post-
selected probability to find σξ = 1 is more than 85%), see Fig. 13.3a and b.
But when the strength of the coupling is weakened, i.e., Δ is increased, the
distribution gradually changes to a single broad peak around

√
2, the weak

value, see Fig. 13.3c–e.
The width of the peak is large and therefore each individual reading of the

pointer usually will be far from
√

2. The physical meaning of the weak value
can, in this case, be associated only with an ensemble of pre- and postselected
particles. The accuracy of defining the center of the distribution goes as 1/

√
N ,

so increasing N , the number of particles in the ensemble, we can find the weak
value with any desired precision, see Fig. 13.3f.

In our example, the weak value of the spin component is
√

2, which is only
slightly more than the maximal eigenvalue, 1. By appropriate choice of the
pre- and postselected states we can get pre- and postselected ensembles with
arbitrarily large weak value of a spin component. One of our first proposals
[6] was to obtain (σξ)w = 100. In this case the postselected state is nearly
orthogonal to the preselected state and, therefore, the probability to obtain
appropriate postselection becomes very small. While in the case of (σξ)w =

√
2

the pre- and postselected ensemble was about half of the preselected ensemble,
in the case of (σξ)w = 100 the postselected ensemble will be smaller than the
original ensemble by the factor of ∼10−4.

13.4.3 Weak Measurements Which Are not Really Weak

We have shown that weak measurements can yield very surprising values
which are far from the range of the eigenvalues. However, the uncertainty of
a single weak measurement (i.e., performed on a single system) in the above
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Fig. 13.3. Measurement on pre- and postselected ensemble: Probability distribution
of the pointer variable for measurement of σξ when the particle is preselected in the
state |↑x〉 and postselected in the state |↑y〉. The strength of the measurement is
parameterized by the width of the distribution Δ. (a) Δ = 0.1; (b) Δ = 0.25; (c)
Δ = 1; (d) Δ = 3; (e) Δ = 10. (f) Weak measurement on the ensemble of 5000
particles; the original width of the peak, Δ = 10, is reduced to 10/

√
5000 � 0.14.

In the strong measurements (a)–(b) the pointer is localized around the eigenvalues
±1, while in the weak measurements (d)–(f) the peak of the distribution is located
in the weak value (σξ)w = 〈↑y|σξ |↑x〉/〈↑y |↑x〉 =

√
2. The outcomes of the weak

measurement on the ensemble of 5000 pre- and postselected particles, (f), are clearly
outside the range of the eigenvalues, (-1,1)
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example is larger than the deviation from the range of the eigenvalues. Each
single measurement separately yields almost no information and the weak
value arises only from the statistical average on the ensemble. The weakness
and the uncertainty of the measurement goes together. Weak measurement
corresponds to small value of P in the Hamiltonian (13.8) and, therefore,
the uncertainty in P has to be small. This requires large Δ, the uncertainty
of the pointer variable. Of course, we can construct measurement with large
uncertainty which is not weak at all, for example, by preparing the measuring
device in a mixed state instead of a Gaussian, but no precise measurement with
weak coupling is possible. So, usually, a weak measurement on a single system
will not yield the weak value with a good precision. However, there are special
cases when it is not so. Usual strength measurement on a single pre- and
postselected system can yield “unusual” (very different from the eigenvalues)
weak value with a good precision. Good precision means that the uncertainty
is much smaller than the deviation from the range of the eigenvalues.

Our example above was not such a case. The weak value (σξ)w =
√

2 is
larger than the highest eigenvalue, 1, only by ∼0.4, while the uncertainty, 1, is
not sufficiently large for obtaining the peak of the distribution near the weak
value, see Fig. 13.3c. Let us modify our experiment in such a way that a single
experiment will yield meaningful surprising result. We consider a system of N
spin- 1

2 particles all prepared in the state |↑x〉 and postselected in the state |↑y〉,
i.e., |Ψ〉 =

∏N
i=1 |↑x〉i and 〈Φ| =

∏N
i=1〈↑y|i. The variable which is measured

at the intermediate time is C ≡ (
∑N

i=1(σi)ξ)/N . The operator C has N + 1
eigenvalues equally spaced between −1 and +1, but the weak value of C is

Cw =

∏N
k=1〈↑y|k

∑N
i=1((σi)x + (σi)y)

∏N
j=1 |↑x〉j√

2 N(〈↑y|↑x〉)N
=

√
2 . (13.40)

The interaction Hamiltonian is

H =
g(t)
N

P
N∑

i=1

(σi)ξ . (13.41)

The initial state of the measuring device defines the precision of the measure-
ment. When we take it to be the Gaussian (6), it is characterized by the width
Δ. For a meaningful experiment we have to takeΔ small. SmallΔ corresponds
to large uncertain P , but now, the strength of the coupling to each individual
spin is reduced by the factor 1/N . Therefore, for large N , both the forward-
evolving state and the backward-evolving state are essentially not changed by
the coupling to the measuring device. Thus, this single measurement yields
the weak value. In [7] it is proven that if the measured observable is an average
on a large set of systems, C =

(∑N
i Ci

)
/N , then we can always construct a

single, good precision measurement of the weak value. Here let us present just
numerical calculations of the probability distribution of the measuring device
for N pre- and postselected spin- 1

2 particles. The state of the pointer after the
postselection for this case is
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N
N∑

i=0

(−1)i

(i!(N − i)!)
(
cos2(π/8)

)N−i (
sin2(π/8)

)i
e−(Q− (2N−i)

N )2/2Δ2
. (13.42)

The probability distribution for the pointer variable Q is

prob(Q)=N 2
( N∑

i=0

(−1)i

(i!(N−i)!)
(
cos2(π/8)

)N−i(sin2(π/8)
)i
e−(Q− (2N−i)

N )2/2Δ2
)2

.

(13.43)
The results for N = 20 and different values of Δ are presented in Fig. 13.4.
We see that for Δ = 0.25 and larger, the obtained results are very good:
the final probability distribution of the pointer is peaked at the weak value,(
(
∑N

i=1(σi)ξ)/N
)
w

=
√

2. This distribution is very close to that of a measur-
ing device measuring operator O on a system in an eigenstate |O=

√
2〉. For

N large, the relative uncertainty can be decreased almost by a factor 1/
√
N

without changing the fact that the peak of the distribution points to the weak
value.

Although our set of particles preselected in one state and postselected
in another state is considered as one system, it looks like an ensemble. In
quantum theory, measurement of the sum does not necessarily yield the same
result as the sum of the results of the separate measurements, so conceptually
our measurement on the set of particles differs from the measurement on an
ensemble of pre- and postselected particles. However, in our example of weak
measurements, the results are the same.

A less ambiguous case is the example considered in the first work on weak
measurements [2]. In this work a single system of a large spin N is considered.
The system is preselected in the state |Ψ〉 = |Sx=N〉 and postselected in the
state |Φ〉 = |Sy=N〉. At an intermediate time the spin component Sξ is weakly
measured and again the “forbidden” value

√
2N is obtained. The uncertainty

has to be only slightly larger than
√
N . The probability distribution of the

results is centered around
√

2N , and for large N it lies clearly outside the
range of the eigenvalues, (−N,N). Unruh [61] made computer calculations of
the distribution of the pointer variable for this case and got results which are
very similar to what is presented in Fig.13.4.

An even more dramatic example is a measurement of the kinetic energy
of a tunneling particle [8]. We consider a particle preselected in a bound state
of a potential well which has negative potential near the origin and vanishing
potential far from the origin; |Ψ〉 = |E=E0〉. Shortly later, the particle is
postselected to be far from the well, inside a classically forbidden tunneling
region; this state can be characterized by vanishing potential |Φ〉 = |U=0〉.
At an intermediate time, a measurement of the kinetic energy is performed.
The weak value of the kinetic energy in this case is

Kw =
〈U=0|K|E=E0〉
〈U=0|E=E0〉

=
〈U=0|E − U |E=E0〉

〈U=0|E=E0〉
= E0 . (13.44)
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Fig. 13.4. Measurement on a single system: Probability distribution of the pointer
variable for the measurement of A = (

∑20
i=1(σi)ξ)/20 when the system of 20 spin-

1
2

particles is preselected in the state |Ψ1〉 =
∏20
i=1 |↑x〉i and postselected in the

state |Ψ2〉 =
∏20
i=1 |↑y〉i. While in the very strong measurements, Δ= 0.01–0.05, the

peaks of the distribution located at the eigenvalues, starting from Δ = 0.25 there is
essentially a single peak at the location of the weak value, Aw =

√
2
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The energy of the bound state, E0, is negative, so the weak value of the ki-
netic energy is negative. In order to obtain this negative value the coupling
to the measuring device need not be too weak. In fact, for any finite strength
of the measurement we can choose the postselected state sufficiently far from
the well to ensure the negative value. Therefore, for appropriate postselec-
tion, the usual strong measurement of a positive definite operator invariably
yields a negative result! This weak value predicted by the two-state vector
formalism demonstrates a remarkable consistency: the value obtained is ex-
actly the value that we would expect a particle to have when the particle
is characterized in the intermediate times by the two wave functions, one in
a ground state, and the other localized outside the well. Indeed, we obtain
this result precisely when we postselect the particle far enough from the well
that it could not have been kicked there as a result of the intermediate mea-
surement. A peculiar interference effect of the pointer takes place: destructive
interference in the whole “allowed” region and constructive interference of the
tails in the “forbidden” negative region. The initial state of the measuring de-
vice Φ(Q), due to the measuring interaction and the postselection, transforms
into a superposition of shifted wave functions. The shifts are by the (possi-
bly small) eigenvalues, but the superposition is approximately equal to the
original wave function shifted by a (large and/or forbidden) weak value:

∑

n

αnΨ
MD(Q− cn) � ΨMD(Q− Cw) . (13.45)

These surprising, even paradoxical effects are really only gedanken exper-
iments. The reason is that, unlike weak measurements on an ensemble, these
are extremely rare events. For yielding an unusual weak value, a single pre-
selected system needs an extremely improbable outcome of the postselection
measurement. Let us compare this with a weak measurement on an ensemble.
In order to get N particles in a pre- and postselected ensemble which yield
(σξ)w = 100, we need ∼N104 particles in the preselected ensemble. But, in
order to get a single system of N particles yielding (Sξ)w = 100N , we need
∼ 104N systems of N preselected particles. In fact, the probability to obtain
an unusual value by error is much larger than the probability to obtain the
proper postselected state. What makes these rare effects interesting is that
there is a strong (although only one-way) correlation: for example, every time
we find in the postselection measurement the particle sufficiently far from the
well, we know that the result of the kinetic energy is negative, and not just
negative: it is equal to the weak value, Kw = E0, with a good precision.

13.4.4 Relations Between Weak and Strong Measurements

In general, weak and strong measurements do not yield the same outcomes.
The outcomes of strong measurements are always the eigenvalues while the
outcomes of weak measurements, the weak values, might be very different from
the eigenvalues. However, there are two important relations between them [4].
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(i) If the description of a quantum system is such that a particular eigen-
value of a variable is obtained with certainty in case it is measured strongly,
then the weak value of this variable is equal to this eigenvalue. This is correct
in all cases, i.e., if the system described by a corresponding single (forward or
backward evolving) eigenstate, or if it is described by a two-state vector, or
even if it is described by a generalized two-state vector.

(ii) The inverse of this theorem is true for dichotomic variables such as
projection operators of spin components of spin- 1

2 particles. The proofs of
both statements are given in [4].

Let us apply the theorem (i) for the example of three boxes when we have
a large number of particles all pre- and postselected in the two-state vector
(13.15). The actual story is as follows: A macroscopic number N of particles
(gas) were all prepared at t1 in a superposition of being in three separated
boxes (13.13). At later time t2 all the particles were found in another su-
perposition (13.14) (this is an extremely rare event). In between, at time t,
weak measurements of a number of particles in each box, which are, essen-
tially, usual measurements of pressure in each box, have been performed. The
readings of the measuring devices for the pressure in the boxes 1, 2, and 3
were

p1 = p ,

p2 = p , (13.46)
p3 = −p ,

where p is the pressure which is expected to be in a box with N particles.
We are pretty certain that this “actual” story never took place because

the probability for the successful postselection is of the order of 3−N ; for a
macroscopic number N it is too small for any real chance to see it happen-
ing. However, given that the postselection does happen, we are safe to claim
that the results (13.46) are correct, i.e., the measurements of pressure at the
intermediate time with very high probability have shown these results.

Indeed, the system of all particles at time t (signified by index i) is de-
scribed by the two-state vector

〈Φ| |Ψ〉 =
1

3N

i=N∏

i=1

(〈1|i + 〈2|i − 〈3|i)
i=N∏

i=1

(|1〉i + |2〉i + |3〉i) . (13.47)

Then, intermediate measurements yield, for each particle, probability 1 for
the the following outcomes of measurements:

P1 = 1 ,
P2 = 1 , (13.48)

P1 + P2 + P3 = 1 ,

where P1 is the projection operator on the state of the particle in box 1, etc.
Thus, from (13.48) and theorem (i) it follows:
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(P1)w = 1 ,
(P2)w = 1 , (13.49)

(P1 + P2 + P3)w = 1 .

Since for any variables, (X+Y )w = Xw+Yw we can deduce that (P3)w = −1.
Similarly, for the “number operators” such as N1 ≡ ΣN

i=1P
(i)
1 , where P(i)

1

is the projection operator on the box 1 for a particle i, we obtain:

(N1)w = N ,

(N2)w = N , (13.50)
(N3)w = −N .

In this rare situation the “weak measurement” need not be very weak: a
usual measurement of pressure is a weak measurement of the number operator.
Thus, the time-symmetrized formalism yields the surprising result (13.46): the
result of the pressure measurement in box 3 is negative! It equals minus the
pressure measured in the boxes 1 and 2.

Of course, the negative pressure was not measured in a real laboratory (it
requires an extremely improbable postselection), but a nonrobust weak mea-
surement for three-box experiment has been performed in a laboratory [62].

Another example of relation between strong and weak measurements is
Hardy’s paradox [37]. The analysis of strong measurements appears in [34]
and the weak measurements are analyzed in detail in [63]. See also discussions
of a realistic experimental proposals [64, 65, 66, 67].

An application of the inverse theorem yields an alternative proof of the
results regarding strong measurements of spin components of a spin- 1

2 particle
described by the generalized two-state vector (13.20). Indeed, the linearity
property of weak measurements yields a “geometrical picture” for weak values
of spin components of a spin- 1

2 particle. The operators σx, σy, and σz are
a complete set of spin operators and they yield a geometry in the familiar
three-dimensional space. Each generalized two-state vector of a spin- 1

2 particle
corresponds to a vector in this three-dimensional space with components equal
to the weak values of σx, σy, and σz. We call it “weak vector.” The weak
value of a spin component in an arbitrary direction, then, is given by the
projection of the weak vector on this direction. If the weak vector is real
and its value larger than 1, then there is a cone of directions the projection
on which is equal 1. This yields an alternative proof that in some situations
there is a continuum of directions forming a cone in which the result of a
spin-component measurements are known with certainty, see Sect. 13.3.5.

13.4.5 Experimental Realizations of Weak Measurements

Realistic weak measurements (on an ensemble) involve preparation of a large
preselection ensemble, coupling to the measuring devices of each element of
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the ensemble, postselection measurement which, in all interesting cases, se-
lects only a small fraction of the original ensemble, selection of corresponding
measuring devices, and statistical analysis of their outcomes. In order to ob-
tain good precision, this selected ensemble of the measuring devices has to be
sufficiently large. Although there are significant technological developments
in “marking” particles running in an experiment, clearly the most effective
solution is that the particles themselves serve as measuring devices. The in-
formation about the measured variable is stored, after the weak measuring
interaction, in their other degree of freedom. In this case, the postselection of
the required final state of the particles automatically yields the selection of
the corresponding measuring devices . The requirement for the postselection
measurement is, then, that there is no coupling between the variable in which
the result of the weak measurement is stored and the postselection device.

An example of such a case is the Stern–Gerlach experiment where the
shift in the momentum of a particle, translated into a spatial shift, yields
the outcome of the spin measurement. Postselection measurement of a spin
component in a certain direction can be implemented by another (this time
strong) Stern–Gerlach coupling which splits the beam of the particles. The
beam corresponding to the desired value of the spin is then analyzed for the
result of the weak measurement. The requirement of nondisturbance of the
results of the weak measurement by postselection can be fulfilled by arranging
the shifts due to the two Stern–Gerlach devices to be orthogonal to each other.
The details are spelled out in [6].

An analysis of a realistic experiment which can yield large weak value Qw
appears in [68]. Duck, Stevenson, and Sudarshan [69] proposed a slightly dif-
ferent optical realization which uses a birefringent plate instead of a prism.
In this case the measured information is stored directly in the spatial shift
of the beam without being generated by the shift in the momentum. Ritchie,
Story, and Hulet [70] adopted this scheme and performed the first successful
experiment measuring the weak value of the polarization operator. Their re-
sults are in very good agreement with theoretical predictions. They obtained
weak values which are very far from the range of the eigenvalues, (−1, 1), their
highest reported result is Qw = 100. The discrepancy between calculated and
observed weak value was 1%. The RMS deviation from the mean of 16 trials
was 4.7%. The width of the probability distribution was Δ = 1000 and the
number of pre- and postselected photons was N ∼ 108, so the theoretical
and experimental uncertainties were of the same order of magnitude. Their
other run, for which they showed experimental data on graphs (which fitted
very nicely theoretical graphs), has the following characteristics: Qw = 31.6,
discrepancy with calculated value 4%, the RMS deviation 16%, Δ = 100,
N ∼ 105. A similar optical experiment has been successfully performed sev-
eral years ago [71].

Recently, optical weak measurement experiments moved to the field of
fiber optics [72, 73, 74]. Another step prevents now any sceptic to argue
that the unusual outcomes of weak measurement are a classical effect because
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macroscopic number of photons are involved in these experiments. The weak
measurement of photon polarization have been performed with single particles
[75]. Note also a more controversial issue of measurement of “time of arrival”
[76] for which weak measurement technique were also applied [77, 78, 79].

Already at 1990 [3] we gave an example of a gedanken experiment in which
pre- and postselection lead to a superluminal propagation of light. Steinberg
and Chiao [80, 81] connected this to superluminal effect observed for tunnel-
ing particles. The issue was analyzed recently by Aharonov et al. [82] and
Sokolovsky et al. [83]. Rohrlich and Aharonov [84] also predicted that there is
really a physical meaning for this superluminal propagation: we should expect
Cherenkov radiation in such experiment.

Note also proposals for weak nonlocal measurements [85, 86]. In these
works it was pointed out that observation of correlations between outcomes
of local weak measurements can yield values of nonlocal variables. However,
these methods are very inefficient, and the methods of efficient nonlocal
measurements [36] require conditions which contradict conditions of weak
measurements, so we doubt that there will be efficient weak nonlocal mea-
surement proposals suitable for realization in a laboratory.

13.5 The Quantum Time-Translation Machine

13.5.1 Introduction

To avoid possible misinterpretations due to the name “time machine,” let us
explain from the outset what our machine [7] can do and how it differs from
the familiar concept of “time machine.” Our device is not for time travel. All
that it can accomplish is to change the rate of time flow for a closed quantum
system. Classically, one can slow down the time flow of a system relative to
an external observer, e.g., by fast travel. Our quantum time machine is able
to change the rate of time flow of a system for a given period by an arbitrary,
even negative, factor. Therefore, our machine, contrary to any classical device,
is capable of moving the system to its “past.” In that case, at the moment the
machine completes its operation the system is in a state in which it was some
time before the beginning of the operation of the time machine. Our machine
can also move the system to the future, i.e., at the end of the operation of the
time machine the system is in a state corresponding to some later time of the
undisturbed evolution.

A central role in the operation of our time machine is played by a peculiar
mathematical identity which we discuss in Sect. 13.5.2. In order to obtain
different time evolutions of the system we use the gravitational time dilation
effect which is discussed in Sect. 13.5.3. In Sect. 13.5.4 we describe the de-
sign and the operation of our time machine. The success of the operation of
our time machine depends on obtaining a specific outcome in the postselec-
tion quantum measurement. The probability of the successful postselection
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measurement is analyzed in Sect. 13.5.5. The concluding discussion of the
limitations and the advantages of our time machine appear in Sect. 13.5.6.

13.5.2 A Peculiar Mathematical Identity

The peculiar interference effect of weak measurements (13.45), that a par-
ticular superposition of identical Gaussians shifted by small values yields the
Gaussian shifted by a large value occurs not just for Gaussians, but for a large
class of functions. Consider now that the system is described by such a wave
function and the shifts are due to the time evolutions for various periods of
time. Then, this effect can be a basis of a (gedanken) time machine. A specific
superposition of time evolutions for short periods of time δtn yields a time
evolution for a large period of time Δt

N∑

n=0

αnU(δtn)|Ψ〉 ∼ U(Δt)|Ψ〉 . (13.51)

This approximate equality holds (with the same δtn and Δt) for a large class
of states |Ψ〉 of the quantum system, and in some cases even for all states of
the system.

In order to obtain different time evolutions U(δtn) we use the gravitational
time dilation effect. For finding the appropriate δtn and αn we will rely on

–15 –10 –5 5 10 15 20 25 30

Fig. 13.5. Demonstration of an approximate equality given by (13.53): The sum of a
function shifted by the 14 values cn between 0 and 1 and multiplied by the coefficients
αn (cn and αn are given by (13.52) with N = 13, η = 10) yields approximately the
same function shifted by the value 10. The dotted line shows f(t); the dashed line
showsf(t − 10), the RHS of (13.53); and the solid line shows the sum, the LHS of
(13.53)
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the identity (13.45) for a particular weak measurement. We choose

cn = n/N, αn =
N !

(N − n)!n!
ηn(1 − η)N−n , (13.52)

where n = 0, 1, ..., N . Note, that the coefficients αn are terms in the binomial
expansion of [η+(1−η)]N and, in particular,

∑N
n=0 αn = 1. The corresponding

“weak value” in this case is η and for a large class of functions (the functions
with Fourier transform bounded by an exponential) we have an approximate
equality

N∑

n=0

αnf(t− cn) � f(t− η) . (13.53)

The proof can be found in [87]. Here we only demonstrate it on a numerical
example, Fig. 13.5. Even for a relatively small number of terms in the sum
(14 in our example), the method works remarkably well. The shifts from 0 to
1 yield the shift by 10. The distortion of the shifted function is not very large.
By increasing the number of terms in the sum, the distortion of the shifted
function can be made arbitrarily small.

13.5.3 Classical Time Machines

A well-known example of a time machine is a rocket which takes a system to
a fast journey. If the rocket is moving with velocity V and the duration of the
journey (in the laboratory frame) is T , then we obtain the time shift (relative
to the situation without the fast journey):

δt = T

(
1 −

√
1 − V 2

c2

)
. (13.54)

For typical laboratory velocities this effect is rather small, but it has been
observed experimentally in precision measurements in satellites and, of course,
the effect is observed on decaying particles in accelerators. In such a “time
machine,” however, the system necessarily experiences external force, and we
consider this a conceptual disadvantage.

In our time machine we use, instead of the time dilation of special relativ-
ity, the gravitational time dilation. The relation between the proper time of
the system placed in a gravitational potential φ and the time of the external
observer ( φ = 0) is given by dτ = dt

√
1 + 2φ/c2. We produce the gravi-

tational potential by surrounding our system with a spherical shell of mass
M and radius R. The gravitational potential inside the shell is φ = −GM/R.
Therefore, the time shift due to the massive shell surrounding our system, i.e.,
the difference between the time period T of the external observer at a large
distance from the shell and the period of the time evolution of the system (the
proper time), is
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δt = T

(
1 −

√
1 − 2GM

c2R

)
. (13.55)

This effect, for any man-made massive shell, is too small to be observed by
today’s instruments. However, the conceptual advantage of this method is
that we do not “touch” our system. Even the gravitational field due to the
massive spherical shell vanishes inside the shell.

The classical time machine can only slow down the time evolution of the
system. For any reasonable mass and radius of the shell, the change of the rate
of the time flow is extremely small. In the next section we shall describe our
quantum time machine which amplifies the effect of the classical gravitational
time machine (for a spherical shell of the same mass), and makes it possible
to speed up the time flow for an evolution of a system, as well as to change
its direction.

13.5.4 Quantum Gravitational Time Machine

In our machine we use the gravitational time dilation and a quantum interfer-
ence phenomenon which, due to the peculiar mathematical property discussed
in Sect. 13.5.2, amplifies the time translation. We produce the superposition
of states shifted in time by small values δtn (due to spherical shells of different
radii) given by the left-hand side of (13.51). Thus, we obtain a time shift by
a possibly large, positive or negative, time interval Δt.

The wave function of a quantum system Ψ(q, t), considered as a function
of time, usually has a Fourier transform which decreases rapidly for large
frequencies. Therefore, the sum of the wave functions shifted by small periods
of time δtn = δtcn, and multiplied by the coefficients αn, with cn and αn given
by (13.52), is approximately equal to the wave function shifted by the large
time Δt = δtη. Since the equality (13.53) is correct with the same coefficients
for all functions with rapidly decreasing Fourier transforms, we obtain for
each q, and therefore for the whole wave function,

N∑

n=0

αnΨ(q, t− δtn) � Ψ(q, t−Δt) . (13.56)

Thus, a device which changes the state of the system from Ψ(q, t) to the state
given by the left-hand side of (13.56) generates the time shift of Δt. Let us
now present a design for such a device and explain how it operates.

Our machine consists of the following parts: a massive spherical shell, a
mechanical device—“the mover”—with a quantum operating system, and a
measuring device which can prepare and verify states of this quantum oper-
ating system.

The massive shell of mass M surrounds our system and its radius R can
have any of the values R0, R1, ..., RN . Initially, R = R0.
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The mover changes the radius of the spherical shell at time t = 0, waits
for an (external) time T, and then moves it back to its original state, i.e., to
the radius R0.

The quantum operating system (QOS) of the mover controls the radius to
which the shell is moved for the period of time T . The Hamiltonian of the
QOS has N + 1 nondegenerate eigenstates |n〉, n = 0, 1, ..., N . If the state of
the QOS is |n〉, then the mover changes the radius of the shell to the value Rn.

The measuring device preselects and postselects the state of the QOS. It
prepares the QOS before the time t = 0 in the initial state

|Ψin〉QOS = N
N∑

n=0

αn|n〉 , (13.57)

with the normalization factor

N =
1√∑N

n=0 |αn|2
. (13.58)

After the mover completes its operation, i.e., after the time t = T , we per-
form another measurement on the QOS. One of the nondegenerate eigenstates
of this measurement is the specific “final state”

|Ψf 〉QOS =
1√
N + 1

N∑

n=0

|n〉 . (13.59)

Our machine works only if the postselection measurement yields the state
(13.59). Unfortunately, this is a very rare event. We shall discuss the proba-
bility of obtaining the appropriate outcome in the next section.

Assume that the postselection measurement is successful, i.e., that we do
obtain the final state (13.59). We will next show that in this case, assuming an
appropriate choice of the radiiRn, our “time machine” shifts the wave function
of the system by the time interval Δt. The time shift is defined relative to the
situation in which the machine has not operated, i.e., the radius of the shell
was not changed from the initial value R0. In order to obtain the desired time
shift Δt = δtη we chose the radii Rn such that

δtn ≡ nδt

N
= T

(√
1 − 2GM

c2R0
−

√
1 − 2GM

c2Rn

)
. (13.60)

The maximal time shift in the different terms of the superposition (the left-
hand side of (13.51)) is δtN = δt. The parameter η is the measure of the
“quantum amplification” relative to the maximal (classical) time shift δt. If
the radius R0 of the shell is large enough that the time dilation due to the
shell in its initial configuration can be neglected, (13.60) simplifies to
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δtn = T

(
1 −

√
1 − 2GM

c2Rn

)
. (13.61)

Let us assume then that we have arranged the radii according to (13.61)
and we have prepared the quantum operating system of the mover in the state
(13.57). Then, just prior to the operation of the time machine the overall state
is the direct product of the corresponding states of the system, the shell, and
the mover,

N|Ψ(q, 0)〉|R0〉
N∑

n=0

αnn〉 , (13.62)

where |R0〉 signifies that the shell, together with the mechanical part of the
mover, is at the radius R0. Although these are clearly macroscopic bodies.
we assume that we can treat them quantum–mechanically. We also make an
idealized assumption that these bodies do not interact with the environment,
i.e., no element of the environment becomes correlated to the radius of the
shell.

Once the mover has operated, changing the radius of the spherical shell,
the overall state becomes

N|Ψ(q, 0)〉
N∑

n=0

αn|Rn〉|n〉 . (13.63)

For different radii Rn, we have different gravitational potentials inside the
shell and, therefore, different relations between the flow of the proper time of
the system and the flow of the external time. Thus, after the external time T
has elapsed, just before the mover takes the radii Rn back to the value R0,
the overall state is

N
N∑

n=0

αn|Ψ(q, T − δtn)〉|Rn〉|n〉 . (13.64)

Note that now the system, the shell, and the QOS are correlated: the system
is not in a pure quantum state. After the mover completes its operation, the
overall state becomes

N
N∑

n=0

αn|Ψ(q, T − δtn)〉|R0〉|n〉. (13.65)

There is still a correlation between the system and the QOS.
The last stage is the postselection measurement performed on the QOS. It

puts the QOS and, consequently, our quantum system, in a pure state. After
the successful postselection measurement, the overall state is

(
N∑

n=0

αn|Ψ(q, T − δtn)〉
)
|R0〉

(
1√
N + 1

N∑

n=0

|n〉
)
. (13.66)
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We have shown that the wave function of the quantum system Ψ(q, t) is
changed by the operation of the time machine into

∑N
n=0 αn|Ψ(q, T−δtn)〉. Up

to the precision of the approximate equality (13.53) (which can be arbitrarily
improved by increasing the number of terms N in the sum), this wave function
is indeed |Ψ(q, T −Δt)〉! Note that for Δt > T , the state of the system at the
moment the time machine has completed its operation is the state in which
the system was before the beginning of the operation of the time machine.

13.5.5 The Probability of the Success
of the Quantum Time Machine

The main conceptual weakness of our time machine is that usually it does
not work. Successful postselection measurements corresponding to large time
shifts are extremely rare. Let us estimate the probability of the successful
postselection measurement in our example. The probability is given by the
square of the norm of the vector obtained by projecting the state (13.66) on
the subspace defined by state (13.59) of the QOS:

Prob = || N√
N + 1

(
N∑

n=0

αn|Ψ(q, T − δtn)〉|R0〉||2 . (13.67)

In order to obtain a time shift without significant distortion, the wave
functions shifted by different times δtn have to be such that the scalar products
between them can be approximated by 1. Taking then the explicit form of αn
from (13.52), we evaluate the probability (13.67), obtaining

Prob � N 2

N
. (13.68)

The normalization factor N given by (13.58) decreases very rapidly for large
N . Even if we use a more efficient choice of the initial and the final states of
the QOS (see [3]) for the amplification, η > 1, the probability decreases with
N as 1/(2η − 1)N .

The small probability of the successful operation of our time machine is,
in fact, unavoidable. At the time just before the postselection measurement,
the system is in a mixture of states correlated to the orthogonal states of
the QOS (see (13.65)). The probability of finding the system at that time
in the state |Ψ(q, T −Δt)〉, for Δt which differs significantly from the time
periods δtn, is usually extremely small. This is the probability to find the
system, by a measurement performed “now,” in the state in which it was
supposed to be at some other time. For any real situation this probability is
tiny but not equal precisely to zero, since all systems with bounded energies
have wave functions with nonvanishing tails. The successful operation of our
time machine is a particular way of “finding” the state of the quantum system
shifted by the period of time Δ = ηδ. Therefore, the probability for success
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cannot be larger than the probability of finding the shifted wave function by
direct measurement.

One can wonder what has been achieved by all this rather complicated
procedure if we can obtain the wave function of the system shifted by the
time period Δt simply by performing a quantum verification measurement
at the time T of the state |Ψ(q, T − Δt)〉. There is a very small chance for
the success of this verification measurement, but using our procedure the
chance is even smaller. What our machine can do, and we are not aware of
any other method which can achieve this, is to shift the wave function in
time without knowing the wave function. If we obtain the desired result of the
postselection measurement (the postselection measurement performed on the
measuring device), we know that the wave function of the system, whatever it
is, is shifted by the time Δt. Not only is the knowledge of the wave function of
the system inessential for our method, but even the very nature of the physical
system whose wave function is shifted by our time machine need not be known.
The only requirement is that the energy distribution of the system decreases
rapidly enough. If the expectation value of the energy can be estimated, then
we can improve dramatically the probability of the success of our procedure.
The level of difficulty of the time shift without distortion depends on the
magnitude of the energy dispersion ΔE and not on the expectation value of
energy 〈E〉. For quantitative analysis of this requirement see [87].

The operation of our time machine can be considered as a superposition
of time evolutions [7] for different periods of time δtn. This name is especially
appropriate if the Hamiltonian of the system is bounded, since in this case
the approximate equality (13.51) is correct for all states |Ψ〉.

13.5.6 Time Translation to the Past and to the Future

Let us spell out again what our machine does. Assume that the time evolution
of the state of the system is given by |Ψ(t)〉. By this we mean that this is
the evolution before the operation of the time machine and this is also the
evolution later, provided we do not operate the time machine. The state |Ψ(t)〉
describes the actual past states of the system and the counterfactual future
states of the system, i.e., the states which will be in the case we do not disturb
the evolution of the system by the operation of our time machine. Define
“now,” t = 0, to be the time at which we begin the operation of the time
machine. The time interval of the operation of the time machine is T . Moving
the system to the past means moving it to the state in which the system
actually was at some time t < 0. Moving the system to the future means
moving it to the state in which it would have wound up after undisturbed
evolution at some future time t > T . Evidently, the classical time machine
does neither of these, since all it can achieve is that at time T the system is
in the state corresponding to the time t, 0 < t < T .

When we speed up or slow down the rate of the time evolution, the system
passes through all states of its undisturbed evolution only once. More bizarre
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is the situation when we reverse the direction of the time flow, thus ending up,
after completing the operation of the time machine, in the state in which the
system was before t = 0. In this case the system passes three times through
some states during its evolution.

For our time machine to operate properly, it is essential that the system
is isolated from the external world. In the case of the time translation to the
state of the past, the system has to be isolated not only during the time of the
operation of the time machine, but also during the whole period of intended
time translation. If the system is to be moved to the state in which it was
at the time t, t < 0, then it has to be isolated from the time t until the end
of operation of the time machine. This seems to be a limitation of our time
machine. It leads, however, to an interesting possibility. We can send a system
to its counterfactual past, i.e., to the past in which it was supposed to be if it
were isolated (or if it were in any environment chosen by us).

Consider an excited atom which we isolate in the vacuum at time t = 0
inside our time machine. And assume that our time machine made a successful
time translation to a negative time t, such that |t| is larger than the lifetime
of the excited atomic state. Since the atom, now, is not in the environment
it was in the past, we do not move the atom to its actual state in the past.
Instead, we move the atom to the state of its counterfactual past. By this
we mean the state of the isolated atom which, under its normal evolution in
the vacuum during the time period |t| winds up in the excited state. In fact,
this is the state of the atom together with an incoming radiation field. The
radiation field is exactly such that it will be absorbed by the atom. Although
our procedure is very complicated and only very rarely successful, still, it
is probably the easiest way to prepare the precise incoming electromagnetic
wave which excites a single atom with probability one.

13.5.7 Experimental Realization of the Quantum
Time-Translation Machine?!

Suter [88] has claimed to perform an experimental realization of the quantum
time-translation machine using a classical Mach–Zehnder interferometer. The
experimental setup of Suter, however, does not fall even close to the definition
of the time machine. In his setup we know what is the system and what is its
initial state. What he shows is that if we send a single mode of a radiation field
through a birefringent retardation device which yields different retardations
for two orthogonal polarizations, then placing the preselection polarization
filter and the postselection polarization filter will lead to a much larger effect
than can be achieved by preselection alone. Thus, it might seem like speeding
up the time evolution, but this procedure fails all tests of universality. Dif-
ferent modes of radiation field speed up differently, an arbitrary wave packet
is usually distorted, and for other systems (other particles) the device is not
supposed to work at all.
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Thus, the first basic requirement that the time machine has to work for
various systems is not fulfilled from the beginning. And it cannot be easily
modified since the “external” variable (which is supposed to be a part of
the time machine) is the property of the system itself—the polarization of
the radiation field. The next necessary requirement, that it works for a large
class of the initial states of the system, cannot be fulfilled too. Indeed, he
considers a superposition of only two time evolutions. This superposition can
be identical to a longer evolution for a particular state, but not for a large
class of states. As it has been shown [7, 87] a superposition of a large number
of time evolutions is necessary for this purpose.

Suter, together with R. Ernst and M. Ernst, performed in the past another
experiment which they called “An experimental realization of a quantum time-
translation machine” [89]. In this experiment a very different system was
used: the effect was demonstrated on the heteronuclear coupling between two
nuclear spins. But the experimental setup was also applicable only to a specific
system and only for a certain state. Therefore, the same criticism is applicable
and, therefore, one should not call it an implementation of the time-translation
machine.

Although the experiments of Suter are not implementations of the quan-
tum time machine, still, they are interesting as weak measurements. The ex-
periment of Suter with a birefringent retardation device can be considered as
a weak measurement of a polarization operator. In fact, this is a variation of
the experiments which were proposed [68] and performed [70] previously. The
“weakness condition” of these two experiments follows from the localization
of the beam (which was sent through a narrow slit). The “weak” regime of the
experiment of Suter is achieved by taking the retardation small. The second
experiment of Suter can be considered as the first weak measurement of a
nuclear spin component.

13.6 Time Symmetry

13.6.1 Forward- and Backward-Evolving Quantum States

Before discussing the time symmetry of the pre- and postselected systems
which are usually discussed in the framework of the two-state vector for-
malism, we will consider the question of differences between possibilities for
manipulating forward-evolving quantum states (13.1) and backward-evolving
state (13.6) which has been recently analyzed [90]. It is particularly impor-
tant in the light of recent argument of Shimony [91] against equal status of
forward- and backward-evolving quantum states.

A notable difference between forward- and backward-evolving states has
to do with the creation of a particular quantum state at a particular time.
In order to create the quantum state |A = a〉 evolving forward in time, we
measure A before this time. We cannot be sure to obtain A = a, but if we
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obtain a different result A = a′ we can always perform a unitary operation and
thus create at time t the state |A = a〉. On the other hand, in order to create
the backward-evolving quantum state 〈A = a|, we measure A after time t. If
we do not obtain the outcome A = a, we cannot repair the situation, since the
correcting transformation has to be performed at a time when we do not yet
know which correction is required. Therefore, a backward-evolving quantum
state at a particular time can be created only with some probability, while
a forward-evolving quantum state can be created with certainty. (Only if the
forward-evolving quantum state is identical to the backward-evolving state we
want to create at time t, and only if we know that no one touches the system
at time t, can the backward-evolving state be created with certainty, since
then the outcome A = a occurs with certainty. But this is not an interesting
case.)

The formalism of quantum theory is time reversal invariant. It does not
have an intrinsic arrow of time. The difference with regard to the creation of
backward and forward evolving quantum state follows from the “memory’s”
arrow of time. We can base our decision of what to do at a particular time only
on events in the past, since future events are unknown to us. The memory time
arrow is responsible for the difference in our ability to manipulate forward-
and backward-evolving quantum states. However, the difference is only in
relation to creation of the quantum state. As we will see below there are no
differences with measurements in the sense of “finding out” what is the state
at a particular time.

The ideal (von Neumann) measurement procedure applies both to for-
ward evolving quantum states and to backward-evolving quantum states. In
both cases, the outcome of the measurement is known after the time of the
measurement. All that is known about what can be measured in an ideal (non-
demolition) measurement of a forward-evolving quantum state can be applied
also to a backward-evolving quantum state. There are constraints on the mea-
surability of nonlocal variables, i.e., variables of composite systems with parts
separated in space. When we consider instantaneous nondemolition measure-
ments (i.e., measurements in which, in a particular Lorentz frame during an
arbitrarily short time, local records appear which, when taken together, spec-
ify the eigenvalue of the nonlocal variable), we have classes of measurable and
unmeasurable variables. For example, the Bell operator variable is measur-
able, while some other variables [92], including certain variables with product
state eigenstates [93, 94], cannot be measured.

The procedure for measuring nonlocal variables involves entangled ancil-
lary particles and local measurements, and can get quite complicated. Fortu-
nately, there is no need to go into detail in order to show the similarity of
the results for forward- and backward-evolving quantum states. The opera-
tional meaning of the statement that a particular variable A is measurable is
that in a sequence of three consecutive measurements of A—the first taking
a long time and possibly including bringing separate parts of the system to
the same location and then returning them, the second being short and non-
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local, and the third, like the first, consisting of bringing together the parts of
the system—all outcomes have to be the same. But this is a time symmetric
statement; if it is true, it means that the variable A is measurable both for
forward- and backward-evolving quantum states.

We need also to obtain the correct probabilities in the case that differ-
ent variables are measured at different times. For a forward-evolving quan-
tum state it follows directly from the linearity of quantum mechanics. For a
backward-evolving quantum state, the simplest argument is the consistency
between the probability of the final measurement, which is now B = b, given
the result of the intermediate measurement A = a, and the result of the inter-
mediate measurement given the result of the final measurement. We assume
that the past is erased. The expression for the former is | 〈A = a|B = b〉|2.
For consistency, the expression for the latter must be the same, but this is
what we need to prove.

In exactly the same way we can show that the same procedure for tele-
portation of a forward-evolving quantum state [95] yields also teleportation of
a backward-evolving quantum state. As the forward-evolving quantum state
is teleported to a space–time point in the future light cone, the backward-
evolving quantum state is teleported to a point in the backward light cone.
Indeed, the operational meaning of teleportation is that the outcome of a
measurement in one place is invariably equal to the outcome of the same
measurement in the other place. Thus, the procedure for teleportation of the
forward-evolving state to a point in the future light cone invariably yields tele-
portation of the backward-evolving quantum state to the backward light cone.

The impossibility of teleportation of the backward-evolving quantum state
outside the backward light cone follows from the fact that it will lead to
teleportation of the forward-evolving quantum state outside the forward light
cone, and this is impossible since it obviously breaks causality.

Another result which has been proved using causality argument is the no
cloning theorem for backward-evolving quantum quantum states [90]. So, also
in this respect there is no difference between forward- and backward-evolving
quantum states.

The argument used above does not answer the question of whether it is
possible to measure nonlocal variables in a demolition measurement. Demoli-
tion measurements destroy (for the future) the state and may be the quan-
tum systems itself. Thus, obviously, a demolition measurement of a nonlocal
variable of a quantum state evolving forward in time does not measure this
variable for a quantum state evolving backward in time. Any nonlocal variable
of a composite system can be measured with demolition for a quantum state
evolving forward in time [96]. Recently, it has been shown [97] also that any
nonlocal variable can be measured for a quantum state evolving backward
in time. Moreover, the procedure is simpler and requires fewer entanglement
resources.

The difference follows from the fact that we can change the direction of
time evolution of a backward-evolving state along with complex conjugation of
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the quantum wave (flipping a spin). Indeed, all we need is to prepare an EPR
state of our system and an ancilla. Guarding the system and the ancilla ensures
that the forward-evolving quantum state of the ancilla is the flipped state of
the system. For a spin wave function we obtain α〈↑|+β〈↓| → −β∗|↑〉+α∗|↓〉.
For a continuous variable wave function Ψ(q) we need the original EPR state
|q − q̃ = 0, p + p̃ = 0〉. Then, the backward-evolving quantum state of the
particle will transform into a complex conjugate state of the ancilla Ψ(q) →
Ψ∗(q̃).

If the particle and the ancilla are located in different locations, then such
an operation is a combination of time reversal and teleportation of a backward-
evolving quantum state of a continuous variable [98].

We cannot flip and change the direction of time evolution of a quantum
state evolving forward in time. To this end we would have to perform a Bell
measurement on the system and the ancilla and to get a particular result
(singlet). However, we cannot ensure this outcome, nor can we correct the
situation otherwise. Moreover, it is easily proven that no other method will
work either. If one could have a machine which turns the time direction (and
flips) a forward-evolving quantum state, then one could prepare at will any
state that evolves toward the past, thus signaling to the past and contradicting
causality.

Let us consider now a pre- and postselected system. It is meaningless
to ask whether we can perform a nondemolition measurement on a system
described by a two-state vector. Indeed, the vector describing the system
should not be changed after the measurement, but there is no such time: for a
forward-evolving state, “after” means later, whereas for a backward-evolving
state, “after” means before. It is meaningful to ask whether we can perform
a demolition measurement on a system described by a two-state vector. The
answer is positive [97], even for composite systems with separated parts.

Next, is it possible to teleport a two-state vector? Although we can teleport
both forward- and backward-evolving quantum states, we cannot teleport the
two-state vector. The reason is that the forward evolving state can be tele-
ported only to the future light cone, while the backward-evolving state can
be teleported only to the backward light cone. Thus, there is no space–time
point to which both states can be teleported.

Finally, the answer to the question of whether it is possible to clone a two-
state vector is negative, since neither forward-evolving nor backward-evolving
quantum states can be cloned.

13.6.2 Time-Symmetric Aspects of Pre- and Postselected Systems

When a quantum system is described by the two-state vector (13.2) or the gen-
eralized two-state vector (13.7), the backward-evolving states enter on equal
footing with the forward-evolving states. Note that the asymmetry in the pro-
cedure for obtaining the state (13.7) is not essential: we can start preparing
1/

√
N

∑
i |Φi〉|i〉 instead.



13 The Two-State Vector Formalism: An Updated Review 437

We will analyze now the symmetry under the interchange 〈Φ| |Ψ〉 ↔ 〈Ψ | |Φ〉.
This will be considered as a symmetry under reversal of the direction of the
arrow of time. It is important to note that in general this interchange is not
equivalent to the interchange of the measurements creating the two-state vec-
tor A = a and B = b. An example showing the nonequivalence can be found
in [99]. However, in order to simplify the discussion, we will assume that the
free Hamiltonian is zero, and therefore |Ψ〉 = |A = a〉 and 〈Φ| = 〈B = b|. In
this case, of course, the reversal of time arrow is identical to the interchange
of the measurements at t1 and t2. If the free Hamiltonian is not zero, then an
appropriate modification should be made [100].

The ABL rule for the probabilities of the outcomes of ideal measurements
(13.9) is also explicitly time-symmetric: First, both 〈Φ| and |Ψ〉 enter the
equation on equal footing. Second, the probability (13.9) is unchanged under
the interchange 〈Φ| |Ψ〉 ↔ 〈Ψ | |Φ〉.

The ABL rule for a quantum system described by a generalized two-
state vector (13.7) is time-symmetric as well: 〈Φi| and |Ψi〉 enter the equa-
tion on equal footing. The manifestation of the symmetry of this formula
under the reversal of the arrow of time includes complex conjugation of
the coefficients. The probability (13.10) is unchanged under the interchange∑

i αi〈Φi| |Ψi〉 ↔
∑

i α
∗
i 〈Ψi| |Φi〉.

The outcomes of weak measurements, the weak values, are also symmetric
under the interchange 〈Φ| |Ψ〉 ↔ 〈Ψ | |Φ〉 provided we perform complex
conjugation of the weak value together with the interchange. This is similar to
complex conjugation of the Schrödinger wave function under the time reversal.
Thus, also for weak measurements there is the time reversal symmetry: both
〈Φ| and |Ψ〉 enter the formula of the weak value on the same footing and there
is symmetry under the interchange of the pre- and postselected states. The
time symmetry holds for weak values of generalized two-state vectors (13.22):
i.e., the interchange

∑
i αi〈Φi| |Ψi〉 ↔

∑
i α

∗
i 〈Ψi| |Φi〉 leads to Cw ↔ C∗

w.

13.6.3 The Time Asymmetry

The symmetry is also suggested in using the language of “preselected” state
and “postselected” state. In order to obtain the two-state vector (13.2) we
need to preselect A = a at t1 and postselect B = b at t2. Both measurements
might not yield the desired outcomes, so we need several systems out of which
we pre- and postselect the one which is described by the two-state vector
(13.2). However, the symmetry is not complete and the language might be
somewhat misleading. It is true that we can only (post)select B = b at t2,
but we can prepare instead of preselect A = a at t1. For preparation of |a〉 a
single system is enough. If the measurement of A yields a different outcome
a′ we can perform a fast unitary operation which will change |A = a′〉 to
|A = a〉 and then the time evolution to time t will bring the system to the
state |Ψ〉. This procedure is impossible for creation of the backward-evolving
state 〈Φ|. Indeed, if the outcome of the measurement of B does not yield b,
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we cannot read it and then make an appropriate unitary operation before
t2 in order to get the state 〈Φ| at time t. We need several systems to post-
select the desired result (unless by chance the first system has the desired
outcome).

Although the formalism includes situations with descriptions by solely
forward-evolving quantum state and by solely backward-evolving quantum
states, here also there is a conceptual difference. For obtaining backward-
evolving state it was necessary to have a guarded ancilla in order to erase
the quantum state evolving from the past. Of course, there is no need for
this complication in obtaining forward-evolving quantum state. The differ-
ence is due to fixed “memory” arrow of time: we know the past and we
do not know the future. This asymmetry is also connected to the concept
of a measurement. It is asymmetric because, by definition, we do not know
the measured value before the measurement and we do know it after the
measurement.

13.6.4 If Measurements are Time-Asymmetric, How the Outcomes
of Measurements are Time-Symmetric?

Taking this asymmetry of the concept of measurement into account, how one
can understand the time symmetry of the formulae for the probability of an
intermediate measurements (13.9), (13.10) and for the formulae of weak values
(13.21), (13.22)?

This is because these formulae deal with the results of the measurements
which, in contrast with the concept of measurement itself, are free from the
time asymmetry of a measurement. The results of measurements represent
the way the system affects other systems (in this case measuring devices) and
these effects, obviously, do not exhibit the time asymmetry of our memory.
The time asymmetry of measurement is due to the fact that the pointer vari-
able of the measuring device is showing “zero” mark before the measurement
and not after the measurement. But the result of the measurement is repre-
sented by the shift of the pointer position. (If originally the pointer showed
“zero” it is also represented by the final position of the pointer.) This shift
is independent of the initial position of the pointer and therefore it is not
sensitive to the time asymmetry caused by asymmetrical fixing of the ini-
tial (and not final) position of the pointer. The relations described in the
formulae of the two-state vector formalism are related to these shifts and,
therefore, the time symmetry of the formulae follows from the underlying
time symmetry of the quantum theory. The shifts of the pointer variable in
weak measurements were considered as “weak-measurements elements of re-
ality” [101] where “elements of reality were identified with “definite shifts.”
This approach was inspired by the EPR elements of reality which are def-
inite outcomes of ideal measurements, i.e., definite shifts in ideal measure-
ment procedures. The next section discusses a controversy related to ideal
measurements.
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13.6.5 Counterfactual Interpretation of the ABL Rule

Several authors criticized the TSVF because of the alleged conflict between
counterfactual interpretations of the ABL rule and predictions of quantum
theory [102, 20, 103, 104]. The form of all these inconsistency proofs is as
follows: The probability of an outcome C = cn of a quantum measurement
performed on a preselected system, given correctly by (13.12), is considered.
In order to allow the analysis using the ABL formula, a measurement at a later
time, t2, with two possible outcomes, which we denote by “1f” and “2f ,” is
introduced. The suggested application of the ABL rule is expressed in the
formula for the probability of the result C = cn

Prob(C = cn) = Prob(1f ) Prob(C = cn ; 1f) (13.69)
+Prob(2f) Prob(C = cn ; 2f ) ,

where Prob(C = cn ; 1f ) and Prob(C = cn ; 2f) are the conditional prob-
abilities given by the ABL formula, (13.9), and Prob(1f ) and Prob(2f ) are
the probabilities of the results of the final measurement. In the proofs, the
authors show that (13.69) is not valid and conclude that the ABL formula is
not applicable to this example and therefore it is not applicable in general.

One us (L.V.) has argued [105, 106, 21] that the error in calculating equal-
ity (13.69) does not arise from the conditional probabilities given by the ABL
formula, but from the calculation of the probabilities Prob(1f ) and Prob(2f)
of the final measurement. In all three alleged proofs, the probabilities Prob(1f)
and Prob(2f ) were calculated on the assumption that no measurement took
place at time t. Clearly, one cannot make this assumption here since then
the discussion about the probability of the result of the measurement at time
t is meaningless. Thus, it is not surprising that the value of the probabil-
ity Prob(C = cn) obtained in this way comes out different from the value
predicted by the quantum theory. Straightforward calculations show that the
formula (13.69) with the probabilities Prob(1f ) and Prob(2f) calculated on
the condition that the intermediate measurement has been performed leads
to the result predicted by the standard formalism of quantum theory.

The analysis of counterfactual statements considers both actual and coun-
terfactual worlds. The statement is considered to be true if it is true in coun-
terfactual worlds “closest” to the actual world. In the context of the ABL
formula, in the actual world the preselection and the postselection has been
successfully performed, but the measurement of C has not (necessarily) been
performed. On the other hand, in counterfactual worlds the measurement of
C has been performed. The problem is to find counterfactual worlds “closest”
to the actual world in which the measurement of C has been performed. The
fallacy in all the inconsistency proofs is that their authors have considered
counterfactual worlds in which C has not been measured.

Even if we disregard this fallacy there is still a difficulty in defining the
“closest” worlds in the framework of the TSVF. In standard quantum theory
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it is possible to use the most natural definition of the “closest” world. Since
the future is considered to be irrelevant for measurements at present time t,
only the period of time before t is considered. Then the definition is:

(i) Closest counterfactual worlds are the worlds in which the sys-
tem is described by the same quantum state as in the actual world.

In the framework of the TSVF, however, this definition is not acceptable. In
the time-symmetric approach the period of time before and after t is consid-
ered. The measurement of C constrains the possible states immediately after
t to the eigenstates of C. Therefore, if in the actual world the state immedi-
ately after t is not an eigenstate of C, no counterfactual world with the same
state exists. Moreover, there is the same problem with the backward- evolving
quantum state (the concept which does not exist in the standard approach)
in the period of time before t. This difficulty can be solved by adopting the
following definition of the closest world [106]:

(ii) Closest counterfactual worlds are the worlds in which the re-
sults of all measurements performed on the system (except the mea-
surement at time t) are the same as in the actual world.

For the preselected only situation, this definition is equivalent to (i), but it is
also applicable to the symmetric pre- and postselected situation. The defini-
tion allows to construct time-symmetric counterfactuals in spite of common
claims that such concept is inconsistent [107].

An important example of counterfactuals in quantum theory are “elements
of reality” which are inspired by the EPR elements of reality. The modification
of the definition of elements of reality applicable to the framework of the TSVF
[34] is:

(iii) If we can infer with certainty that the result of measuring at
time t of an observable C is c, then, at time t, there exists an element
of reality C = c.

The word “infer” is neutral relative to past and future. The inference about
results at time t is based on the results of measurements on the system per-
formed both before and after time t. Note that there are situations (e.g., the
three-boxes example) in which we can “infer” some facts that cannot be ob-
tained by neither “prediction” based on the past results nor “retrodiction”
based on the future results separately.

The theorem (i) of Sect. 13.4.4 now can be formulated in a simple way:
If A = a is an element of reality then Aw = a is the weak-measurement of
reality. The theorem (ii) of Sect. 13.4.4 can be formulated as follows. If A
is a dichotomic variable, a is an eigenvalue of A, and if Aw = a is a weak-
measurement element of reality, then A = a is an element of reality.

The discussion about the meaning of time symmetric counterfactuals con-
tinues until today. Kastner changed her view on such counterfactuals from
“inconsistent” to “trivial” [108]. See Vaidman’s reply [109] and other very
recent contributions on this issue [110, 111, 112].
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13.7 Protective Measurements

Several years ago we proposed a concept of protective measurements [113,
114, 115] which provides an argument strengthening the consideration of a
quantum state as a “reality” of some kind. We have shown that “protected”
quantum states can be observed just on a single quantum system. On the other
hand, if a single quantum state is “the reality” how “the two-state vector”
can be “the reality”?

13.7.1 Protective Measurement of a Single Quantum State

In order to measure the quantum state of single system one has to measure
expectation values of various observables. In general, the weak (expectation)
value cannot be measured on a single system. However, it can be done if the
quantum state is protected [113, 114]. The appropriate measurement interac-
tion is again described the Hamiltonian (13.8), but instead of an impulsive
interaction the adiabatic limit of slow and weak interaction is considered:
g(t) = 1/T for most of the interaction time T and g(t) goes to zero gradually
before and after the period T .

In this case the interaction Hamiltonian does not dominate the time evo-
lution during the measurement, moreover, it can be considered as a perturba-
tion. The free Hamiltonian H0 dominates the evolution. In order to protect a
quantum state this Hamiltonian must have the state to be a nondegenerate
energy eigenstate. For g(t) smooth enough we then obtain an adiabatic pro-
cess in which the system cannot make a transition from one energy eigenstate
to another, and, in the limit T → ∞, the interaction Hamiltonian changes
the energy eigenstate by an infinitesimal amount. If the initial state of the
system is an eigenstate |Ei〉 of H0 then for any given value of P , the energy
of the eigenstate shifts by an infinitesimal amount given by the first-order
perturbation theory: δE = 〈Ei|Hint|Ei〉 = 〈Ei|A|Ei〉P/T. The corresponding
time evolution e−iP 〈Ei|A|Ei〉 shifts the pointer by the expectation value of A
in the state |Ei〉. Thus, the probability distribution of the pointer variable,
e−(Q−ai)2/Δ2

remains unchanged in its shape, and is shifted by the expectation
value 〈A〉i = 〈Ei|A|Ei〉.

If the initial state of the system is a superposition of several nonde-
generate energy eigenstates |Ψ1〉 = Σαi|Ei〉, then a particular outcome
〈A〉i ≡ 〈Ei|A|Ei〉 appears at random, with the probability |αi|2 [61]. (Subse-
quent adiabatic measurements of the same observable A invariably yield the
expectation value in the same eigenstate |Ei〉.)

13.7.2 Protective Measurement of a Two-State Vector

At first sight, it seems that protection of a two-state vector is impossible.
Indeed, if we add a potential that makes one state a nondegenerate eigenstate,
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then the other state, if it is different, cannot be an eigenstate too. (The states
of the two-state vector cannot be orthogonal.) But, nevertheless, protection
of the two-state vector is possible [116].

The procedure for protection of a two-state vector of a given system is
accomplished by coupling the system to another pre- and postselected sys-
tem. The protection procedure takes advantage of the fact that weak values
might acquire complex values. Thus, the effective Hamiltonian of the protec-
tion might not be Hermitian. Non-Hermitian Hamiltonians act in different
ways on quantum states evolving forward and backwards in time. This allows
simultaneous protection of two different states (evolving in opposite time di-
rections).

Let us consider an example [116] of a two-state vector of a spin- 1
2 parti-

cle, 〈↑y||↑x〉. The protection procedure uses an external pre- and postselected
system S of a large spin N that is coupled to our spin via the interaction

Hprot = −λS · σ . (13.70)

The external system is preselected in the state |Sx=N〉 and postselected in the
state 〈Sy=N |, that is, it is described by the two-state vector 〈Sy=N ||Sx=N〉.
The coupling constant λ is chosen in such a way that the interaction with
our spin- 1

2 particle cannot change significantly the two-state vector of the
protective system S, and the spin- 1

2 particle “feels” the effective Hamiltonian
in which S is replaced by its weak value,

Sw =
〈Sy = N |(Sx, Sy, Sz)|Sx = N〉

〈Sy = N |Sx = N〉 = (N,N, iN) . (13.71)

Thus, the effective protective Hamiltonian is

Heff = −λN(σx + σy + iσz) . (13.72)

The state |↑x〉 is an eigenstates of this (non-Hermitian) Hamiltonian (with
eigenvalue −λN). For backward-evolving states the effective Hamiltonian is
the hermitian conjugate of (13.72) and it has different (nondegenerate) eigen-
state with this eigenvalue; the eigenstate is 〈↑y|.

In order to prove that the Hamiltonian (13.70) indeed provides the protec-
tion, we have to show that the two-state vector 〈↑y||↑x〉 will remain essentially
unchanged during the measurement. We consider measurement which is per-
formed during the period of time, between pre- and postselection which we
choose to be equal one. The Hamiltonian

H = −λS · σ + Pσξ (13.73)

can be replaced by the effective Hamiltonian

Heff = −λN(σx + σy + iσz) + Pσξ . (13.74)
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Indeed, the system with the spin S can be considered as N spin-1/2 particles
all preselected in |↑x〉 state and postselected in |↑y〉 state. The strength of
the coupling to each spin-1/2 particle is λ � 1, therefore during the time
of the measurement their states cannot be changed significantly. Thus, the
forward-evolving state |Sx=N〉 and the backward-evolving state 〈Sy=N | do
not change significantly during the measuring process. The effective coupling
to such system is the coupling to its weak values.

Good precision of the measurement of the spin component requires large
uncertainty in P , but we can arrange the experiment in such a way that
P � λN . Then the second term in the Hamiltonian (13.74) will not change
significantly the eigenvectors. The two-state vector 〈↑y||↑x〉 will remain essen-
tially unchanged during the measurement, and therefore the measuring device
on this single particle will yield (σξ)w = 〈↑y|σξ|↑x〉

〈↑y|↑x〉 .
The Hamiltonian (13.73), with an external system described by the two-

state vector 〈Sy = N ||Sx = N〉, provides protection for the two-state vec-
tor 〈↑y||↑x〉. It is not difficult to demonstrate that any two-state vector ob-
tained by pre- and postselection of the spin- 1

2 particle can be protected by
the Hamiltonian (13.73). A general form of the two-state vector is 〈↑β||↑α〉
where α̂ and β̂ denote some directions. It can be verified by a straightforward
calculation that the two-state vector 〈↑β||↑α〉 is protected when the two-state
vector of the protective device is 〈Sβ = N ||Sα = N〉.

At least formally we can generalize this method to make a protective mea-
surement of an arbitrary two-state vector 〈Ψ2||Ψ1〉 of an arbitrary system. Let
us decompose the post-selected state |Ψ2〉 = a|Ψ1〉+ b|Ψ⊥〉. Now we can define
“model spin” states: |Ψ1〉 ≡ |↑̃z〉 and |Ψ⊥〉 ≡ |↓̃z〉. On the basis of the two
orthogonal states we can obtain all other “model spin” states. For example,
|↑̃x〉 = 1/

√
2 (|↑̃z〉 + |↓̃z〉), and then we can define the “spin model” opera-

tor σ̃. Now, the protection Hamiltonian, in complete analogy with the spin-1
2

particle case is
Hprot = −λS · σ̃ . (13.75)

In order to protect the state 〈Ψ2||Ψ1〉, the pre-selected state of the external
system has to be |Sz=N〉 and the postselected state has to be 〈Sχ=N | where
the direction χ̂ is defined by the “spin model” representation of the state |Ψ2〉,

|↑̃χ〉 ≡ |Ψ2〉 = 〈Ψ1|Ψ2〉|↑̃z〉 + 〈Ψ⊥|Ψ2〉|↓̃z〉 . (13.76)

However, this scheme usually leads to unphysical interaction and is good
only as a gedanken experiment in the framework of nonrelativistic quantum
theory where we assume that any Hermitian Hamiltonian is possible.

13.8 The TSVF and the Many-Worlds Interpretation
of Quantum Theory

The TSVF fits very well into the many-worlds interpretation (MWI) [117],
the preferred interpretation of quantum theory of one of us (L.V.) [118]. The
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counterfactual worlds corresponding to different outcomes of quantum mea-
surements have in the MWI an especially clear meaning: these are subjectively
actual different worlds. In each world, the observers of the quantum measure-
ment call their world the actual one, but, if they believe in the MWI they have
no paradoxes about ontology of the other worlds. The apparent paradox that a
weak value at a given time might change from an expectation value to a weak
value corresponding to a particular postselection is solved in a natural way:
in a world with pre-selection only (before the postselection) the weak value
is the expectation value; then this world splits into several worlds according
to results of the postselection measurement and in each of these worlds the
weak value will be that corresponding to the particular postselection. The
time-symmetric concepts of “elements of reality,” “weak-measurements ele-
ments of reality” are consistent and meaningful in the context of a particular
world. Otherwise, at time t, before the “future” measurements have been
performed, the only meaningful concepts are the concepts of the standard,
time-asymmetric approach.

One of us (Y.A.) is not ready to adopt the far reaching consequences of
the MWI. He proposes another solution [119]. It takes the TSVF even more
seriously than it was presented in this paper. Even at present, before the “fu-
ture” measurements, the backward evolving quantum state (or its complex
conjugate evolving forward in time) exists! It exists in the same way as the
quantum state evolving from the past exists. This state corresponds to partic-
ular outcomes of all measurements in the future. An element of arbitrariness:
“Why this particular outcome and not some other?” might discourage, but the
alternative (without the many-worlds)—the collapse of the quantum wave—is
clearly worse than that.
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305, 306, 319, 323, 325

Klein–Gordon equation, 221, 395
Klein-Gordon equation, 359
Kochen–Specker’s theorem, 19
Kramers–Kronig relations, 339

Landau–Zener tunneling, 115
Langevin equation, 169
large time behaviour of survival

probability, 59
Larmor clock, 22, 23, 208, 213, 230, 248,

279, 281, 344
Larmor clock: optical, 236
Larmor frequency, 209, 279, 344
Larmor precession, 23, 236, 244, 251,

281, 289, 346, 350
Larmor time, 344, 350
laser-cooled atoms, 349
Levinson’s theorem, 41, 53
lifetime, 12, 50, 75, 84, 86, 102, 107,

111, 112, 124, 235, 241, 245
lifetime-linewidth relation, 86, 88
Lindblad form, 180
Lippmann–Schwinger equation, 35
local density of states, 279, 281, 287,

288, 290–292, 294
local dwell time, 281, 289
local expectation value, 131
local kinetic energy, 338
local Larmor clock, 252, 279
local Larmor time, 301
locality, 141, 151, 153
lowering operator, 179

Möller operator, 33
magnetorefractive layered structure,

256
Mandelstam–Tamm relation, 7, 82, 84,

86, 88, 90, 99, 100, 103
many-worlds interpretation, 10, 125
Markovian approximation, 180, 273
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master equation, 20, 176, 180, 261, 273
matrix mechanics, 2
maximally symmetric operator, 310,

311, 315, 317, 319
measurement of particle position, 133
measurement theory, 231
measuring device, 335
metastable state, 111
meter, 200
micromaser clock, 256, 258
millisecond regime, 349
monochromatic front, 64, 66
Moshinsky’s shutter, 82
Mott’s analysis of particle tracks, 186

Naimark’s theorem, 306, 313, 319
nano-technology, 195
negative delay, 53, 339
negative energies, 14, 319, 320
negative time, 23, 205, 281
nodal points, 252
non-commuting observables, 21, 281
nonlinear autocorrelation, 339
nonlinear polarisability, 337
nonlocality, 142, 154, 350

observable time, 75
open system, 20
operational model, 24
optical clock, 256
optical potential, 292
oscillating potential, 21, 63, 281, 343

pair creation, 133
parametric downconversion, 338
parametric time, 247, 271–274
partial density of states, 280, 284, 286
particle equation of motion, 131
particle trajectories, 130
particle-antiparticle pair, 133, 224
particle-meter coupling, 202
particle-meter Schrödinger equation,

230
passage time, 106, 108, 109, 116, 118,

123–125
path decomposition, 196
path decomposition expansion, 171
path integral, 108, 195, 244
path-integral approach, 22, 165, 196

Pauli matrices, 118, 249
Pauli’s “theorem”, 5, 13, 14, 75, 93, 94,

305, 316, 323
Pauli’s theorem, 95
penetration time, 370, 380
period of applicability, 271
phase delay, 365, 383, 385
phase shift, 242, 336
phase space, 247
phase time, 48, 142, 255, 258
phase velocity, 62, 387
photon detection, 20
photon number operator, 258
photonic bandgap, 340
photonic tunneling, 195, 257
plasmons, 214
Poincaré recurrence, 123
Poincaré sphere, 346
pointer, 201, 335
pointer of a clock, 237, 246
pointer variables, 248
position–momentum uncertainty

relation, 4
Positive Operator Valued Measure

(POVM), 16, 17, 76, 78–80, 91–96,
239, 259, 305, 308–311, 314, 319,
320

Positive Operator-Valued Measure
(POVM), 6

potentiality, 7, 8, 19
preparation time and energy, 81
principle of indeterminacy, 4
probability current density, 131, 145
probability functional, 272, 274
probability interpretation, 3
projector approach of Brouard, Sala

and Muga, 142, see BSM approach
protective measurements, 150
pulse–peak arrival time, 346
pump-probe paradigm, 334

quantile approach, 146
quantum beats, 102
quantum Brownian motion, 169, 172,

176, 177
quantum capacitance, 295
quantum clock, 11, 89, 165, 236, 247
quantum clock approach, 245
quantum cosmology, 163, 184
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quantum decay, 108
quantum gravity, 163
quantum jump, 1, 3, 4, 7–9, 19, 106,

108, 124, 261, 262
quantum jump experiments, 108
quantum measurement problem, 299
quantum measurement theory, 113, 119
quantum mechanics with sources, 14
quantum noise, 273
quantum projection noise, 12
quantum trajectory, 20
quasidistributions, 247

Rabi oscillation, 258
raising operator, 179
Raman–Nath approximation, 258
Ramsey’s method of separated fields, 11
real clocks, 271
real measurement, 333
reality of wave function, 154
reduction of the wave function, 7
reflection amplitude, 38, 243
reflection probability, 287
reflection probability amplitude, 37
reflection time, 137, 244
refractive index, 256
relative error correlation time, 271
relativistic causality, 24, 339
relativistic traversal time, 220
reshaping of wave packets, 142
resonance tunneling, 211
response time, 113, 114
restricted Green function, 170

Salecker–Wigner clock, 89, 238, 241,
244, 245, 248

scanning tunneling microscope (STM),
290

scattering matrix, 32, 36, 37, 39, 40, 42,
46, 280, 282, 286

scattering phase shift, 12, 339
scattering states, 9, 22, 282
scattering time, 226
Schrödinger’s wave picture, 4
screen observable, 92
second quantization, 327
sensitivity, 285, 286, 289
short time behaviour, 58
signal velocity, 62, 356, 370

simultaneous measurement, 247
slab, 256
small noise approximation, 273
Smith’s lifetime matrix, 50
sojourn time, 43, 44, 342, see dwell time
source boundary condition, 65
source with a sharp onset, 64, 66
sources in quantum mechanics, 13
space-time coarse grainings, 170
space-time event, 236, 238
space-time probabilities, 165
space-time regions, 164
special states, 120
spectral theorem, 52, 313
spectrogram, 64
spin polarization, 279
spin precession, 279
spin rotation, 279
spin-dependent arrival-time distribu-

tion, 147
spinor, 132, 147, 249, 250, 283, 284
Split-Operator-Method, 269
spontaneous collapse, 19
stationary-phase approximation, 50,

336, 339
step potential, 33
stimulated Raman transitions, 349
stochastic, 359, 366, 381, 395
stochastic processes, 272, 273
Stokes parameters, 346
stopwatch, 11, 195, 196, 236, 241
streak camera method, 336
superluminal, 355, 362, 387
superluminal arrival times, 338
superluminal effects, 24, 62, 211, 216,

217, 220, 224, 225, 227, 231, 236,
244, 339

superluminal transmission time, 142,
225

survival probability, 55, 57, 86, 123
systematic projector approach, 21

table of characteristic times, 109
telegrapher’s equation, 357, 366, 380
temporal diffraction experiments, 102
temporal interference, 100, 101
thermal bath, 270, 274
thermodynamic arrow of time, 124
thought experiments, 4
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three-box experiment, 406
time and frequency standards, 12
time as a parameter, 6
time as an observable, 6, 7, 17, 89,

91–93, 96
time covariance, 16, 18, 92, 247, 324
time delay, 12, 43, 46, 48, 50, 51, 53, 75,

250, 334, 335, 337
time indeterminacy, 100
time measurement, 89, 93, 333, 350
time of arrival, 13, 14, 16, 19, 20, 100,

107, 241, 246, 247, 305–307, 315,
320, 323, 324, 329

time of arrival for identical particles,
327

time of event, 3, 10, 18
time of first-photon detection, 262
time of flight, 10, 52, 75, 236–238, 241,

242, 342
time of passage, 83, 92, 99, 101–103, 238
time of presence, 136
time operator, 5, 13, 75, 92, 95, 96, 165,

320, 333
time operator of Aharonov and Bohm,

13, 305, 315, 317, 319, 320, 323
time resolution, 241
time resolution of a clock, 238,

243, 245
time reversal invariance, 37
time reversibility, 348
time–energy entangled photons, 102
time–energy uncertainty relation, 4, 5,

7, 13, 73–89, 91–96, 98–103, 109
time–frequency representation of the

wave function, 64
time-dependent clock, 263
time-energy uncertainty relation, 4, 7,

112, 125, 165, 237, 305, 325
time-of-arrival distribution, 16, 188
time-of-arrival operator, 16, 305, 307,

315, 320, 323
time-to-amplitude convertors, 334
total reflection, 363, 370, 389
toy model, 246
trajectory approach, 245
transition elements, 368
transition probability, 2, 9
transition rate, 3, 114
transition time between isomers, 118

transmission amplitude, 38, 243
transmission probability, 215, 269, 287,

301
transmission probability

amplitude, 37
transmission speed, 244, 252
transmission time, 23, 137, 244
traversal time, 20, 63, 64, 195,

214, 342
traversal time for tunneling, 299
traversal-time operator, 231
tunneling, 55, 111, 336
tunneling electrons, 236, 256
tunneling semiconductor, 236
tunneling time, 20, 107, 109, 112, 124,

137, 196, 236, 281, 355, 367, 389,
394

two-level atom, 114, 258
two-level system detector, 179, 247
two-photon interferometer, 338
two-slit diffraction experiment,

147, 198
two-state vector, 15

ultra-cold atoms, 349
ultrafast laser, 334
uncertainty relation, 4
uniqueness of Bohm particle velocity,

132
uniqueness of probability current

density, 132

voltage probe, 291
Von Neumann equation, 272
Von Neumann measurement, 231

wave mechanics, 2
wave-particle duality, 134
waveguides, 336
weak detector-environment coupling,

180
weak measurement, 23, 156, 202, 203,

213, 225, 228, 244, 347
weakly decoherent histories, 168
Wheeler–DeWitt equation, 163, 184,

186
white-light interference, 337
Wigner function, 146, 177, 178, 186
Wigner’s arrival-time distribution, 136
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Wigner–Smith delay time matrix, 298

Wilson cloud chamber, 186

WKB approximation, 64, 252, 298, 343,
344

Zeeman splitting, 257
Zeno effect, 17, 20, 109, 110, 112, 115,

118, 245
Zeno paradox, 200
Zeno time, 110, 114, 118, 123, 124
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